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Linking epigenetic marks to clinical outcomes improves insight into molecular processes,
disease prediction, and therapeutic target identification. Here, a statistical approach is pre-
sented to infer the epigenetic architecture of complex disease, determine the variation
captured by epigenetic effects, and estimate phenotype-epigenetic probe associations jointly.
Implicitly adjusting for probe correlations, data structure (cell-count or relatedness), and
single-nucleotide polymorphism (SNP) marker effects, improves association estimates and in
9,448 individuals, 75.7% (95% Cl| 71.70-79.3) of body mass index (BMI) variation and
45.6% (95% Cl 37.3-51.9) of cigarette consumption variation was captured by whole blood
methylation array data. Pathway-linked probes of blood cholesterol, lipid transport and sterol
metabolism for BMI, and xenobiotic stimuli response for smoking, showed >1.5 times larger
associations with >95% posterior inclusion probability. Prediction accuracy improved by
28.7% for BMI and 10.2% for smoking over a LASSO model, with age-, and tissue-specificity,
implying associations are a phenotypic consequence rather than causal.
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ata characterizing gene expression, protein structure, or

epigenetic modifications such as DNA methylation, his-

tone marks and nucleosome positioning are becoming
increasingly available. Epigenetic marks reflect a wide range of
environmental exposures and genetic influences, are critical for
regulating gene and non-coding RNA expression!, and have been
shown to be associated with disease’. The identification of
clinically relevant epigenetic loci can provide insight into the
molecular underpinning of disease?, leading to identification of
biologically relevant therapeutic targets* and potentially
epigenetic-guided clinical decision making’.

Most studies testing for association between genomic data and
complex traits utilize methodology from genome-wide associa-
tions studies, meaning that probe effects are tested one at a time®.
This methodology does not account for correlations among
probes and leads to model over-fitting, poor effect size estimation,
and poor calibration of prediction owing to omitted variable
bias’. In addition, data structure such as intra-sample cellular
heterogeneity, sample relatedness, population stratification, or
experimental design effects are a major challenge® and result in
more cross-chromosome correlation than genetic data. This
structure, in conjunction with the fact that cases and controls
typically differ in their cell-type composition, can result in
spurious associations and many statistical algorithms have been
proposed to tackle these potential biases”->10, However, all cur-
rent statistical approaches rely upon corrections for structure that
require a choice of either a suitable reference profile of repre-
sentative cell types, or a limited number of pre-selected variables
computed from the methylation data (e.g, LFMM2!! or
ReFACTor!?), with the underlying assumption that all con-
founders are reflected by a sparse set of latent covariates and
methylation sites.

Here, we present an alternative approach, based on Bayesian
inference, that: (i) estimates probe effects on an outcome jointly
whilst adjusting for other covariates such as sex and age, avoiding
model over-fitting and controlling for both data structure
(including cell-count effects) and correlations among probes; (ii)
does not require any knowledge of cell-type composition or any
selection of proxy confounder variables (i.e., accounts for both
known and unknown confounders); (iii) estimates the total pro-
portion of disease risk accounted for by the probe effects
(cumulative proportion of variance explained); (iv) estimates
probe effects conditional on other sources of data such as single-
nucleotide polymorphism data, enabling a determination of the
unique contribution of different data; (v) gives an in-depth
understanding of the genome-wide range of probe effects in terms
of the likely number of independent effects and their variance
explained; (vi) can incorporate genomic annotation information
into the analysis when estimating probe effects, facilitating unique
genome-wide enrichment analyses, describing the variance
explained and number of trait-associated probes of each anno-
tation; and (vil) provides improved estimation of biomarker
effects, which could be used for disease risk assessment. The
approach is similar to, but more flexible than linear mixed model
analyses recently proposed in genome-wide association studies!,
given that we can assign different prior distributions to different
sources of variance (individual covariates or groups of covariates).
We demonstrate properties (i) through (vii) with theory, simu-
lation and then empirical analysis of body mass index (BMI) and
smoking behavior for 9448 individuals with methylation probe
measures from whole blood!4.

Results
Methods overview. Our approach assumes that the observed
phenotype y is reflected by a linear combination of genetic effects

(Bc) estimated from single-nucleotide polymorphism (SNP) data,
epigenetic effects (B.,¢) estimated from probes on an array, along
with age and sex specific effects (a, y), such that:

y = aage + ysex + X, ., + Xgf + € (1)

pg
with the effects B, Bpe @ and y being estimated in a Bayesian
statistical model. Unlike previous approaches that assign a mix-
ture of Gaussian distributions and a discrete spike at zero as a
prior for all effects, we assign a new set of mixtures to each group,
effectively augmenting the number of hyperparameters pro-
portionally to the number of groups of variables (two in the case
of SNPs and methylation probes). This allows for non-identifiable
effects to be excluded from the model, whereas the rest are esti-
mated jointly. Adjusting for all different covariates and their
effects while estimating each individual probe effect, better alle-
viates problems related to correlations and structure in the
marker data as we show in our simulation study (Fig. 1, also see
Methods). Distinguishing between groups of covariates helps us
better identify the variance attributable to each group, especially
in cases where average effects are bigger in one group (as is likely
for methylation and genetic markers). This is because each probe
estimate is made after adjusting for the SNP markers and the
other “omics” probes in the model. Therefore, our model cap-
tures, and thus accounts for, genetic relationships in the datal®
and importantly for “omics” data, the model also automatically
accounts and controls for structural effects (such as cell-count
effects, experimental batch effects, or population structure),
negating the need to add additional controls for cell counts or
principal components within the model.

Our software implementation of this modeling framework,
(BayesRR, which is freely available, see “Code availability”) is
entirely flexible. Unlike existing methods, any number of data
sources can be modeled together, each with separate mixtures,
making it applicable to any kind of genetic or epigenetic data.
Owing to efficient computational implementation (see Methods),
it is also entirely scalable to future data sizes. Furthermore, if only
epigenetic probe data are available, estimates of the probe effects
would still be obtained jointly, avoiding model over-fitting and
controlling for both data structure (including cell-count effects)
and correlations among probes (Fig. 1, also see Methods). In
addition, other major covariates could be included, for example,
including genetic loci of large effect such as HLA in immuno-
disease or APOE4 variant in Alzheimer disease, or latent factors
can still be fit alongside alongside the probe data. We provide an
example of how the model can be simply extended to allow probe
effects to be estimated accounting for genomic annotation
information, providing estimates of genomic enrichment that
do not reply on post hoc testing. This flexibility is important as
data sets will likely be variable in their structure and the degree to
which different “omics” measures are correlated.

Simulation study. We simulated methylation data for 2000
individuals at 103,638 probes with five different cell types. We
reproduced cell-type proportion variation present in real
methylation probe data, using a recently proposed simulation
model!2. Our first simulation scenario, was a sparse setting, where
a phenotype is determined by 100 differentially methylated
probes (see Methods), which cumulatively explained 60% of the
phenotypic variance in the trait. We focus in the main text on two
scenarios where probes are associated with cell-type proportion
variation and the norm of the correlation vector between the
phenotype and the cell-type proportions is either 0.08 or 0.25.
These scenarios reflect different degrees of confounding between
phenotype and cell-type proportions. We then conduct additional
simulations with a wide a range of settings, varying the cell-type
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proportions, the proportions of differentially methylated probes,
the variance of differentially methylated probes, and the variance
of the measurement noise and we present these within the Sup-
plementary Information (Figs. 1-4 and see Methods).

We benchmarked our BayesRR approach against four recently
proposed methods: single-probe least squares regression, which
estimates probe associations one-by-one whilst correcting for
sparse latent factors to control for cell proportion confounding
(ReFACTor!2), single-probe mixed linear model association test
that estimates probe associations one-by-one conditional on a

relationship matrix estimated from the probe data (OSCA-
moal3), a multi-probe ridge regression that estimates all probe
associations jointly and conditionally on latent factors (LFMM2-
ridge!!), and a multimarker LASSO model, which estimates all
probe associations jointly and conditionally on latent factors
(LFMM2-lasso!!). Our BayesRR approach outperforms these
approaches as it estimates phenotype-probe associations more
accurately with higher correlation of the estimated effects with
the true simulated values and with lower mean square error
(MSE, Fig. la). This results in almost twice the number of
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Fig. 1 Simulation study. Boxplots of distribution of scores, the line in the middle of the box represents the median, upper, and lower bounds of the box
represent first and third quartiles respectively, whiskers represent datum up to 1.5 interquartile distance from box bounds. a Estimation of phenotype-
epigenetic associations using five recent approaches, BayesRR in Brown, to OSCA-moa in magenta, ReFACTor in gray, LFMM-Lasso in Cyan and LFMM-
Ridge in Blue; where probes are associated with cell-type proportion variation and the norm of the correlation vector between the phenotype and the cell-
type proportions have two different values either 0.08 or 0.25. Row panels provide results for different metrics of performance: the correlation between
true effects and estimates (p(8, 8)), the slope of a regression of the estimates on the true effects (B3p) the number of genome-wide significant probes
identified (loci), the mean square error (MSE), the MSE of the genome-wide significant probes (MSE), the false discovery rate (FDR), the norm of the
correlation vector between a individual-level predictor made from the probe effects and the cell-type proportions (||p(R, g)||), the correlation between
the first principal component of the probe data and the difference between the estimated and true effect (||p(P, R)||) and the phenotypic variance
attributable to the probes (ofg). Black lines give the true value across panels. b Comparison of BayesRR with just the methods, which fit probes jointly
(multi-probe methods) either accounting for latent factors (LFMM-Lasso in Cyan and LFMM-Ridge in blue) or not (GLMNET-Lasso in dark-blue and
GLMNET-Ridge in dark-yellow). € Simulation results of methylation marker effects for a phenotype influenced by both 100 methylation probes and 1000
SNP markers, showing the difference between the true and the estimated phenotypic variance explained by genetic markers (aé — aé) and epigenetic
probes (ofg - a?g). d Comparisons of approaches that do not fit latent factors within the model when the underlying epigenetic architecture is less sparse

(phenotype is influenced by 1000 probes, rather than only 100).

methylome-wide significant discoveries at >95% posterior
inclusion probability (IP) within this data, whilst controlling
for cell-type proportion confounding and maintaining a false
discovery rate of much <5% (Fig. 1a). BayesRR controls for cell
proportion confounding without a requirement for the addition
of latent factors within the model, as evidenced by: (i) the
accurate effect size estimates with reduced MSE; (ii) no inflation
of the norm of the correlation vector between a individual-level
predictor made from the probe effects and the cell-type
proportions, and (iii) no correlation between the first principal
component of the probe data and the difference between the
estimated and true effect, despite significant cell-type proportion
confounding within the simulated data (Fig. 1a).

This is further evidenced by comparing LASSO and ridge
regression with latent factors implemented in LEMM!!, to LASSO
and ridge regression without latent factors as implemented in
glmnet!®, where we find that that ability to recover the true effects
is increased, phenotype-probe associations are better estimated,
and cell-type confounding is controlled by the models that do not
fit latent factors (Fig. 1b). This is because there are probes in this
setting that both influence the phenotype and are associated with
cell-type proportions, and thus by removing variation associated
with leading latent factors of the data, capacity to detect these
probes and estimate their effects accurately is reduced. In this
setting, approaches that estimate phenotype-probe association
one-by-one such as ReFACTor and OSCA-moa, do not control
for correlations in probe effects across the genome, resulting in
increased MSE and erroneous correlations between probe effect
estimates and cell-type proportion confounding (Fig. 1a). Having
shown that multi-probe methods remove the necessity for latent
factor correction and that BayesRR performs better than other
multi-probe approaches (Fig. la, b), we then conduct our
remaining benchmarking of BayesRR against LASSO and ridge
regression without latent factor correction as implemented in
glmnet, finding the exact same increased performance of BayesRR
irrespective of the variance of the cell-type proportions, the
proportions of differentially methylated probes, the variance of
differentially methylated probes, and the variance of the
measurement noise (see Supplementary Figs. 1-4).

BayesRR also provides accurate estimation of the total
proportion of phenotypic variance explained by the probes,
represented by the panel ogg in Fig. 1a across different scenarios.
With the exception of a mixed linear model as implemented in
restricted effects maximum likelihood within OSCA!3 (OSCA-
moa), all other approaches only enable estimation of the
proportion of variance attributable probes identified as genome-
wide significant and thus do not provide an estimate of the total

association between the phenotype and the probe data (Fig. 1a).
We examined whether methylation probe effects can be estimated
conditionally on the SNP marker effects to determine the unique
contribution of each type of marker. We simulated correlated
genetic and epigenetic effects, with 100 epigenetic effects drawn
from a normal distribution N(0,0.5/100), and a combination of
100 genetic effects drawn from a normal distribution
N(0,0.2/100) and 900 smaller genetic effects drawn from
N(0,0.01/900) from a total of 103,638 simulated SNP markers.
We find that BayesRR can better distinguish between the variance
explained by genetic markers and methylation probes, as compared
with LASSO or ridge regression implemented in glmnet, but with
higher variability in the error of estimates as compared with when
only estimating phenotypic variance associated with methylation
probe (Fig. 1c and Supplementary Fig. 4).

We then compared BayesRR with other multi-probe
approaches that do not fit latent factors within the model across
two levels of sparsity, the first where a phenotype is influenced by
100 probes (Fig. la) and the second where a phenotype is
influenced by 1000 probes (Fig. 1d). Both the mixed linear model
and BayesRR provide unbiased estimates of the proportion of
phenotypic variance captured by the probes, with the error
variance of each approach dependent upon the underlying effect
size distribution (Fig. la, d). Again however, estimated effects
from the other multi-probe approaches showed reduced correla-
tion with the true effects and higher MSE as compared with
BayesRR, demonstrating that BayesRR will provide improved
performance in both sparse and non-sparse regimes (Fig. 1d).

Application to BMI and smoking. We then applied BayesRR to
two lifestyle factors, smoking and BM], that are correlated with
numerous health outcomes across the lifecourse. Previous studies
have shown that smoking produces a strong alteration in
methylation levels, which are related to the etiology of smoking-
related disease!”. BMI has also been associated with methylation
levels and adipose-related traits!8. Here, we present results from a
converged set of four models for each trait, each model having
different starting values, applied to 9448 individuals of the Gen-
eration Scotland cohort.

For BMI, 75.7% (95% CI 71.70-79.3) of the phenotypic
variance was captured by methylation probes, with 39.5% (95%
CI 28.3-49.7) of this attributable to 509.3 (95% CI 348-663)
probes that each explain ~0.1% of the phenotypic variance (Fig. 2,
Supplementary Tables 1 and 2). The remaining phenotypic
variance captured by methylation probes, was attributable to 10
probes with 95% IP, which cumulatively explain 9.7% (95% CI
7.5-11.9) of the phenotypic variance of BMI (Fig. 2b). This
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Fig. 2 Biomarker architecture. Boxplot representing distribution of scores, the line in the middle represents the median, lower bound of the box represents
the first quartile, upper bound represents the third quartile, whiskers represent up to 1.5 times the interquartile range from the top or bottom, respectively
a Phenotypic variance of BMI attributable to the three mixtures for single-nucleotide polymorphism markers (SNP; genetic) and methylation probes, with
mixture variances (0.00001, 0.0001, 0.001) and (0.0001, 0.001, 0.01), respectively for BMI, and (0.0001, 0.001, 0.01), and (0.01, 0.1, 1.0) for smoking.
b For BMI, the phenotypic variance captured by all markers in the model (blue) and for the markers with 95% posterior inclusion probability (IP; red) is
shown. ¢ For cigarette consumption, the phenotypic variance captured by the mixtures for the SNPs and methylation probes, with same mixture-specific
variances as for BMI. d Phenotypic variance captured by all markers in the model (blue) and by the markers with 95% IP for cigarette consumption.

e Distribution of proportion of all methylation probes in model for BMI (red) and smoking (blue).

suggests that most epigenetic probe effects for BMI are relatively
small, but larger than SNP marker effects, which cumulatively
capture an additional 15.8% (CI 11.2-20.5) of the phenotypic
variance (Fig. 2a). In total, the variance captured by both
methylation probes and SNP markers was estimated as 91.5%
(95% CI 87.3-95). For smoking behavior, defined as the number
of pack years, we find that 45.6% (95% CI 37.3-51.9) of
phenotypic variance is captured by methylation probes (Fig. 2). In
contrast to BMI, we find evidence for 17 probes with 95% IP,
which capture (26.7%, 95% CI 22.3-30.9) the variance explained
by methylation probes (Fig. 2). We observe that 35.15% (95% CI
24-46) of phenotypic variance was attributable to 111.34 (95% CI
87-140) methylation probes of effect size <1%, whereas there are
3.42 (95% CI 0-9) probes with effect size <10% explaining 5.5%
(95% CI 0-14.27) of the variance (Fig. 2). Of the probes mapped
to genes, 6.43% (95% CI 4.91-7.95) are in the model for BMI,
>0.2% (95% CI 0.15-0.24) for smoking behavior (Fig. 2). In total,
the variance captured by both methylation probes and SNP
markers was estimated as 51.5% (95% CI 42.1-58.8). Taken
together, these results highlight the ability of our approach to
describe the architecture of epigenetic associations, in terms of
the likely number and effect size of associated probes, and our
results imply a large effective number of epigenetic probe
associations, spread throughout the genome, for BMI as opposed
to a limited number for smoking behavior.

We performed our analysis both with and without adjustment
for the first 20 principal components of the genetic data, the first 20

principal components of the methylation levels and the cell
composition, finding practically identical estimates with and
without these adjustments (see Methods). We repeated the analysis
but excluded close relatives and modeled only the methylation
probe effects in 2,614 unrelated individuals, finding 69.55% (95%
CI 57.35-78.32) of the phenotypic variance for BMI and 73.83%
(95% CI 54.33-88.26) for smoking, respectively. We also used a
linear mixed effects model where probe values are used to calculate
a co-variance matrix, which is then used in a restricted maximum
likelihood estimation (REML) approach!3, but this approach did
not produce a converged set of estimates for either phenotype, with
or without relatives in this data. These results imply that our
estimates of the variance captured by methylation probes, are
independent of the variance attributable to SNP markers,
independent of family effects, and independent of data structure
captured by the leading principal components of the data.

We then proceeded to derive annotation information from the
posterior distribution over effects to provide some biological
inference. First, we looked for Gene Ontology (GO) enrichment
for the probes whose IP was >95% (see Methods). From the 20
top-enriched terms, we find those corresponding to thrombin-
related pathways and cerebral cortex development for smoking
(Supplementary Table 6). From the 20 top-enriched terms, we
find those related to ESCRT-II complex, glycoprotein transport,
and cholesterol for BMI (Supplementary Table 7).

We looked for the probes with 95% IP, shown in Fig. 3a, b, in
the EWAS catalog. We count the appearance of traits in previous
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Fig. 3 Annotation replication and enrichment analysis. a, b Posterior distribution of effect sizes for methylation probes with 95% posterior inclusion
probability (IP) for BMI and smoking, respectively. ¢, d Previous associations found for the probes with 95% IP according to the EWAS catalog.

e, f Comparison between mean effect sizes of probes with Posterior Inclusion Probability (PIP) >0 and effect sizes from literature in the EWAS catalog.
Each cross represents the mean of the posterior estimates, colored point represents an effect size from the EWAS catalog, with blue indicating that the
effect size had the same sign as our estimates, in red the contrary case. The shape of the point indicates in which tissue this effect was computed from,
circle for Blood and triangle for other tissues. We notice how the agreement between our estimates and literature diminishes as the PIP diminishes, as in

our case regularization protects us against overestimation of small effects.

associations for each of these probes with 95% IP, the resulting
histograms are shown in Fig. 3c, d. We also found associations
with triglycerides, cholesterol, and smoking for the probes found
in the BMI trait. We found previous associations with Alcohol
consumption and educational attainment for the probes found in
the smoking trait. From the probes with 95% IP in BMI, all had
been previously associated with BMI in the EWAS catalog, for
smoking, three probes with 95% IP had not been previously
associated with smoking-related traits in the EWAS catalog, these

probes are cg00884093, cg0440053, and cg23288337. We further
looked in genes associated with these probes, we found gene
CELSRI for which has been associated to chronic obstructive
pulmonary disease disk among women!®; the other gene, ETVS5 is
member of the oncogenic subfamily of ETS transcription factors’;
the final gene, ECEL1P2 has been associated with differential
methylation levels in smokers even after quitting and lung
cancer risk?1?2. Thus, probes with 95% IP show congruent
with previous results along with suggesting two genes whose
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DNA methylation levels are not directly related to smoking in
literature.

We performed a comparison of the magnitude and sign over all
mean effect sizes estimated in this study and those in the EWAS
catalog over different tissues. The resulting plots Fig. 3e for BMI
and Fig. 3f for smoking show in the upper panel the logarithm
base 10 of our mean effect estimates as black crosses, with blue
points representing previous effect sizes with the same sign as our
estimates, and with shape corresponding to the tissue these effects
were calculated for, red points indicate that the previous estimate
had the opposite sign than our estimates. On the lower panel of
both subfigures we observe the PIP of the corresponding probe in
the upper panel, we observe how the congruency between our
estimates and the EWAS catalog estimates diminishes as the PIP
reduces. For our model, the reduction of power to identify the
effect is reflected. However, without regularization we run the risk
of systematically over-estimating the effect sizes if non-significant
effect sizes are unreported, as seems to be the case here. By
regularizing, we are better equipped to resolve the estimates in
these low power regimes, yielding improved estimation and more
efficient use of the data.

We further take advantage of the fact that if we use the
posterior distribution over all effects, we can derive a posterior
distribution over GO terms and devise a definition of enrichment
(see Methods). Under our enrichment statistic, we can measure
those GO terms, which explain a greater proportion of
phenotypic variance than expected, given the proportion of
probes that map to the GO term (Supplementary Fig. 17 for BMI,
Supplementary Fig. 18 for smoking). Then, using a ROPE
decision rule??, we can define a term as being enriched if the IP of
the GO term in the model is >95%, and if 95% of the posterior
distribution of enrichment is outside the interval (0.5,1.5). We
sorted significantly enriched terms by their mean enrichment and
generated a tree map of the terms using REVIGO?4. For BMI,
there is a preponderance of lipid transport, cholesterol transport,
morphogenesis, and above all, regulation of epidermal growth
factor-activated receptor activity (Supplementary Fig. 15). For
smoking, response to xenobiotic stimulus was enriched (Supple-
mentary Fig. 16). Taken together, this demonstrates the novel
findings and additional inference that can be obtained from
conducting whole-genome enrichment analyses, rather than
testing for enrichment at only those effects that are singularly
found to be above a significance threshold.

Third, we took this one-step further by extending our model to
group probes according to prior biological information and then
estimate the probe effects incorporating genomic annotation. We
based our annotations on results by?> that computed ¢ scores for
the specificity of gene expression in every tissue from GTEx
consortium?. We considered that a gene was differentially
expressed (positively or negatively) specifically to a given tissue if
the absolute value of its t score for that tissue was in the 0.001 or
0.999 quantiles of the ¢ distribution. We then mapped the probes
to genes and genes to tissues, probes that did not mapped to a
gene in the GTEx data were put in a different group. In order to
achieve non overlapping associations of probes to tissues (as
required for our model), we assigned each gene to the tissue they
were the most specific to (i.e., the tissue that had the highest
absolute ¢ score for that gene). The probes were therefore put in
46 different groups (one for each tissue available in GTEx) when
feasible. Some tissues had too few probes associated to them, we
therefore lumped them together in group 47 (others) so that every
group contained at least 200 probes. Probes that were mapped to
genes that do not appear in the array were put in group 48, age
and sex were assigned to group 49, and SNPs to group 50. Each
one of these groups were assigned the prior mixture variances of
(0.0001, 0.001, 0.01). We estimated the variance attributable to

each group of probes and further decomposed these estimates by
the mixture they belonged (Fig. 4). For both traits, methylation
probes of genes differentially expressed in whole blood showed
highest variance explained which is expected given the tissue used
to generate the methylation data (Fig. 4). Conditional on this, our
model partitions the variation attributable to other annotation
groups, and across mixture groups within each annotation. For
BMI, methylation of genes that are differentially expressed in the
adrenal gland, subcutaneous adipose, thyroid, fibroblasts also
showed larger effect sizes (Fig. 4). For smoking, we find that
probes mapping to genes that are differentially expressed in the
aorta, the tibial artery, the brain spinal cord, and lymphocytes are
also those with larger probe effects (Fig. 4). Associations for BMI
are spread among tissues and among mixtures more so than for
smoking (Fig. 4), highlighting the large effective number of BMI
associations in blood spread across biological processes.

Finally, we use the estimated methylation probe effects to
predict BMI and smoking behavior in the Lothian Birth Cohort
1936 (LBC), the Accessible Resource of Integrated Epigenomics
Studies (ARIES) data set and the UK Adult Twin (TwinsUK)
Registry (see Methods). We compared the prediction accuracy
gained from our approach to recently obtained estimates from
another model based on the LASSO estimator, using the R?
metric. For BMI, we achieve an adjusted R? of 19.5% with a slope
of 0.72 (0.052 SE) for adult BMI in LBC and 30.83% with a slope
of 0.86 (0.041 SE) in TwinsUK (Table 1), reflecting the fact that
the age structure of TwinsUK more closely reflects that of GS, then
the elderly individuals of LBC. In the ARIES data set, we achieve
R? of 3.34% with a slope of 0.38 (0.061 SE) for birth weight, 2.05%
with slope of 0.3 (0.069 SE) for BMI at age 7, 9.65% with a slope of
0.6 (0.071 SE) for BMI age 15 and up, 24.43% with a slope of 0.84
(0.069 SE) for BMI in adult males, and 18.36% with a slope of 0.7
(0.069 SE) for BMI in adult females (Table 1). Differences in slope
(and prediction accuracy) imply differences in the methylation
associations across ages and cohorts for BMI, suggesting that
methylation associations are a consequence of BMI and are to
some degree specific to the lifestyle/diet of individuals at a
particular time and place. Overall, these values amount to an
improvement of 28.7% in comparison to the LASSO predictor in
the LBC. For smoking, we observed an adjusted R? of 47.9% with
slope of 1.02 (0.058 SE) for LBC and 38.49% with slope of 1.01
(0.057 SE) for males in ARIES, 13.7% more than the LASSO
predictor (Table 1). This replicates previous results showing that
methylation profiles predict BMI independently of genetic profiles
in an additive manner?” and shows that our approach can better
capture the overall distribution of effects, including small effects,
whereas accurately estimating larger effects, leading to improved
phenotypic prediction.

We further assessed the variation captured by our predictors in
adipose tissue within the TwinsUK data, finding 9.33% R? with a
slope of 0.4 (0.065 SE, Table 1), implying that methylation
associations in whole blood and adipose tissue overlap, but with a
degree of tissue-specificity. We also assessed the variation
captured by our predictors in other traits finding in LBC wave
one that our smoking predictor captures 7.2% of the variance for
forced expiratory volume, and our BMI predictor captures 11.2%
of the variance of triglyceride levels in blood and 7.6% of the
variance of high density lipoprotein levels in blood. These results,
along with our enrichment analyses, show that our approach
captures a signal related to the relevant biological processes
underlying these phenotypes, but that trait-methylation associa-
tions show age- and tissue-specificity.

It is important to note that the sample size and variance
captured by all of the probe effects in the training data govern the
prediction accuracy obtaining in the testing data. Following?3, the
squared correlation between a phenotype in an independent
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Fig. 4 Variance attributable to tissue-specific gene expression. a, b \Variance explained by probes that have tissue-specific differentiated gene expression
in Genotype-Tissue Expression (GTEx) project. Variance explained is decomposed by the mixture to which the posterior effects belong. For both traits, the
biggest contribution comes from probes not mapped into genes differentially expressed in GTEx (not shown). From the probes that mapped into
differentially expressed genes, in smoking, the biggest mixture (1% of the total variance explained by probes) captures probes mapping to genes
differentially expressed in tibial and aorta arteries, along with the spinal cord, indicating these contribute more than what is observed by the rest of the
probes among tissues and mixtures. For BMI, no such difference in effects distribution was observed among mixtures and among tissues.

sample and a predictor of the phenotype can be approximated
given the sample size of the initial study, the expected variance
explained by the covariates, and the effective number of
independent covariates. Assuming an effective number of
covariates of 20,000 (approximate number of protein coding
genes) an RZ of ~25% is expected for BMI within our prediction
samples, which is in-line with the values we obtain here. If the

initial study sample size increased to 100,000 individuals than an
R? of over 60% is expected, which in combination with SNP array
data, would lead to a predictor of BMI with an R2 of ~80% from a
single blood test. However, the theory described above does not
account for the fact that probe variation is likely a consequence of
the phenotype and thus in a regression equation, phenotypic
variance will appear on both sides. If the consequential effects are
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Table 1 R2(%) in replication study.

Trait Method LBC1936 TwinsUK? A.0 A7 A.15 A.FOF A.FOM.
BMIP LASSO 18.7 - 1.07 0.3 2.95 9.37 14.95
Bayes 19.5 30.83/9.33 334 2.05 9.65 18.36 24.45
Smoking® LASSO 42184 - - - - 24.71 -
Bayes 47.9 - - - - 38.49 -

aWhole blood/adipose tissue.
blog(kg/m?2).

Clog(p.p.y.+D.

dEstimates from GS wave 1, n=5000.

A phenotypic predictor was created in the Lothian Birth Cohort data 1936 (LBC1936) and Accessible Resource of Integrated Epigenomics Studies (ARIES) cohorts from the methylation effects estimated
in the Generation Scotland (GS) data. The prediction accuracy as measured by the R? statistic is presented as compared with LASSO estimates of the methylation effects. In the ARIES cohort, A.O refers
to measures at birth, A.7 refers to measures at age 7, A.15 refers to measures at age 15, A.FOF refers to adult males (fathers), and A.FOM refers to females (mothers).

large and there are considerable changes with age that occur??, or
differences in effects across tissues, then the prediction accuracy
obtained from methylation probe data will likely differ across
cohorts as demonstrated here.

Discussion

We present BayesRR, a statistical model for joint inference of
genetic and epigenetic effects over complex phenotypic traits. Using
simulation, we show that BayesRR outperforms other approaches as
it has the advantage of controlling for all factors at once and per-
forming statistical inference jointly on all of the model parameters
and adjusting estimates conditionally on each other. By working in
a Bayesian framework, we derive a rich representation of the esti-
mated effects through probability distributions, where all markers
are taken into account and for which we can assess genome-wide
enrichment of relevant biological features. From these distributions,
we conclude that from the same set of probes in the same indivi-
duals, two example phenotypes show different architecture in the
distribution of their effects, with the distribution of effects for
cigarette consumption being more concentrated in a few epigenetic
markers (15 markers with 95% IP explaining ~26.78%), whereas for
BMI, we have more probes associated with the phenotype (17
markers with 95% IP explain only 9.70%). Our genome-wide
enrichment analyses, identified blood cholesterol, lipid transport,
and sterol metabolism pathways for BMI, and response to xeno-
biotic stimulus for smoking, all with >95% posterior IP of having
methylation probes with effects sizes >1.5 times larger than the
average. For both BMI and cigarette consumption, a large amount
of phenotypic variance is captured by epigenetic markers in the
training data set, which may be expected as trait-associated DNA
methylation probe variation is likely to a large degree to be a
consequence of the phenotype, as evidenced in our enrichment
analyses and the prediction results from the ARIES study. These
consequential effects lead to the expectation that if applied to
common complex disease, the model we present may enable
accurate characterization of disease progression and better identi-
fication of individuals who are on a path to disease where future
diagnosis is likely (i.e., those that are pre-diabetic, in the early stages
of dementia, etc.). It remains to be seen whether such large amounts
of phenotypic variance can be captured by a methylation array for
common complex disease, but our prediction results shows that our
approach can better describe the overall distribution of associations
leading to improved phenotypic prediction.

There are a number of important considerations and caveats. It
is important to punctuate that the inferred associations only relate
to the present state of the biomarkers and are not intended to
capture any causality between methylation status and outcome.
Given the highly variable nature of “omics” measures, the varia-
tion across data sets in the degree of confounding by experimental
biases or unwanted biological variation that will contribute to the
variation captured by probes, and the considerable changes with

age that occur??, it is highly unlikely that the phenotypic variance
attributable to probes is stable across cohorts and with age.
Determining biomarkers for future disease outcomes requires a
different experimental design, for example, longitudinal studies
with a baseline, along with methodological extensions for causal
inference within this framework, which our future work will focus
on. In addition, while we extend the model to ask how much
additional phenotypic variance of each trait can be captured by
methylation probes from whole blood above that captured by a
SNP array, partitioning the phenotypic variance explained exactly
may be difficult in data sets where factors are highly correlated.
Furthermore, although we present a whole-genome enrichment
approach, identifying novel pathways is currently limited and
technological improvements are required to improve our ability to
capture, define, and understand epigenetic marker variation.
Finally, Bayesian inference comes at increased computational cost
and requires the specification of prior distributions, for example
here, that effects can be well described by a series of Gaussian
distributions. A Student-t likelihood could be a path worth
exploring as its inferences could be more robust to outliers’® and
additionally, although a Gaussian model may still be applied to
categorical disease-or-not measurements, developing an extension
to model binary response variables and explore performance in
unbalanced case-control settings will likely be worthwhile.

In conclusion, our model can be applied to any kind of genomics
data providing unbiased estimates of marker effects, conditional on
other markers, covariates and on the data structure, without the
need for specific cell-type proportion control. By operating in a
Bayesian framework, the uncertainties over the estimates given the
data are represented explicitly, helping the researcher to interpret
and draw conclusions over the architecture of the variance in the
trait. We provide freely available software with source code available
to facilitate further replication and potential applications of the
methodology (see “Code Availability”).

Methods

Statistical model. We assume additive probe effects 8, € RMae*! genetic effects
B € RMo*! age and sex effects a, y associated over a vector of measurements over
a trait y € RN such that,

y = aage + ysex + X, 8., + X + € (2)

where € ~ N(0,021), the methylation matrix X,,, and the genotype matrix Xg
have been centered and scaled to unit variance. We assume that only a subset of
© = {By, Bg- @, y} have an identifiable effect over trait y, as such, and proceeding
in a Bayesian framework, we assign a sparsity inducing prior over ®. The chosen
prior follows the formulation of ref. 31, which is a mixture of L Gaussian probability
densities and a discrete “spike” at zero. As such, each ®; € @ is distributed
according to:

0, ~ mydy + mN(0,07) + MmN (0,03) + ... +mN(0,07) (3)
where {my, 7,,m,, ... ,m,} are the mixture proportions and {0?,0%, ... ,07 } are
the mixture-specific variances and & is a discrete probability mass at zero.
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We further constrain the prior by assuming a single parameter representing the
total variance explained by the effects 02, and the component-specific variances are
proportional to ¢2, that is

a G
o ) G

=0 (4)
o C

with {C,,C,, ... ,C,} being constants.

Our main contribution consists of allowing different subsets of ® to have
specific o2 and 7 parameters, our contention is that in cases where one data source’s
effect are in a different scale than on the other, the extra degrees of freedom will
allow to better resolve the smaller effects, whereas the group specific variance
parameters will pool information of the effects within a group and keep the model
identifiable. In our case, we assign to the genetic effects S a set of mixture
variances C; = {0.0001,0.001,0.01}, a proportion parameter 77 and variance

parameter o%. We assign to the methylation probes, age, and sex effects ¢ =
{ﬁq,g,tx, y} the prior variances Cy = {0.01,0.1,1} and parameters Ty, O'é

The rest of the model follows the prior hierarchy of ref. 3! but with additional
parameters for groups G and ¢.

g ~ Dirichlet (pg)
7y ~ Dirichlet (p¢)
(TZG ~ Inv — Scaledy® (vo,sé) (5)
G; ~ Inv — Scaledy? (vy, 5g)
oz ~ Inv — Sca.led)(2 (VOA,Sé)
with the respective hyperparameters {pG, Py: Vo, sg} such that the prior

distributions are weakly informative, p; = p; = (1,1,1),v, = s = 0.001.

Model inference. Inference of the probabilistic model follows a Gibbs sampling
algorithm. Here, the joint posterior probability density of parameters

(@, s 025 0%, 0, TG, nq,) conditioned on observed phenotype y and observed

covariates Z = [XG X,,, age sex] is denoted asp(@),y7 02,0%, O’é, G, 7r¢\Z,y) and

Pg
decomposed according to the conditional distributions over each parameter:

p(®~,#~,<f§~0?;~0$77Tc~,ﬂ¢|27v) ~p(ul®,d2Z.,y)
XP(@)\U?;-,UW,of,ZJ)

xp(aglBe, 76)
x p(761Bg, 05) (6)
xp(oi\ﬁ(p,n(p)

xp(n¢\ﬁ¢,aé>

xp(o?|u,©,Z,y).

Given the prior distributions presented in Eq. 2, the conditional distributions are:

Zf\il (Yi - Zi®) ‘Lz)

p(ul®,072,y) o N( N N ?)

Mg 2
OB S,
p(0%1Bg, ™) o Inv — Scaledy’ <mG + Vmw> (8)

vy +mg
p(ng|Bg, 0%) o Dirichlet <p¢ + #KG) 9)
Mg 2
) 5 my > :B¢i +voSo
p(%\ﬂq,, ”Vs) o Inv — Scaledy <m¢ + vo,w (10)
p(n¢|[5¢, aé) o Dirichlet (p¢ + #K¢) (11)

N 2 2
Al —u—270 N
P(Uﬂ#a @.,Z.,Y) o Inv — Scaledy? (Vo 4N, Yini (Y1 “ i ) + Vo 0)

vo+ N
(12)

where mg and my are the number of markers in each respective category in a
sample and #Kg, #K,, are vectors that contain the number of markers in each
mixture for the respective categories.

Residual updating algorithm. The most computationally expensive step of sampling
from the distribution in Eq. 2 involves drawing from the conditional distribution

p(@l0%. 3. p.0%. 2y) (13)

if conditioned on the Markov blanket of effects ©, the distribution is a multivariate
normal with mean m and co-variance ¥ such that

m=3Z"y (14)

a2\
T=02 (ZTZ+—§I> (15)
o
1

with o7 being the mixture-specific variance and the residual’s variance 2. Inverting
matrix X is of complexity O((M ¢t+M ¢)3)‘ If we use the properties of multivariate
Gaussian distributions, we can decompose

Mg+My,,
P(®‘U%;:Ué»i475§azvy) O(Hi:hl o
sents all the effects except effect ®,. Then each individual update consists of:

P(®i|®\zgé= Uinua O'?,Z,y) X N(f'{ivzli)

p(@i\G)\[U%;, 051,02, Z, y), where ®,; repre-

(16)
with
Ui = ZX'ZIT (Y —H— Z\z@\i)

o2\ ! (17)
T = a;2<zl.Tz,- +—§> .
[ o
This obviates the necessity of inverting matrix X, if in addition we keep in memory
the vector of residuals € =y — y — ZO, then we can compute efficiently y — y — Z;0;
by the update y — y — Z,0; = € + Z,0; =y, thus sampling from the joint
distribution with a complexity O(M c+M ¢). Mixing and convergence issues that

may arise in this formulation have been shown to be alleviated by randomly choosing
an effect ®; to update, as seen in successful implementations of the algorithm?!.

Algorithm 1 Algorithm for sampling over the posterior distribution p(u, 8, €, 0., 6), each
sample (4, f, €, 0., 0) is stored in a synchronized queue for a consumer thread to store in
disk. X,,,, 4., Tepresents column of X corresponding to the column j of the vector marker.
Given that marker is shuffled before sampling the effects, this is equivalent to permuting
the order of the effects to be sampled.

Input: genotype matrix X¢, methylation probe matrix X,,,, age and sex, vector of trait
measurements y, prior hyperparameters {pG,p¢,v0,s(2)}, number of iterations I.
Output: mean y, effects vector ® = ,BM, ,BG, «, y}, residual vector e, residuals variance
07, and posterior parameters, 0, 05
Initialize ©, 4, 07, 0%, 03, G, 7
effects = (1... Mg, (Mg + 1)... (Mg + M,), (Mg + My + 1), (Mg + M, +2))
-set Z=[Xg X, age sex|
e=y—u—710
. Foriin 1..I
(a) sample y =
(b) shuffle (effects)
(c) Forjin 1... (Mg +M¢ +2)
L y=e+ Zeﬂect/ Opfect,
ii. Sample @, ’

y 5 Zeﬁect, ®eﬁ'eczj

N

iii. e=y
(d) sample o
(e) sample 02(;

(f) sample o
(g) enqueue (y, B, €, o, )

Drawing from the mixtures. To select the mixture / from which to draw the effect
©,, we must evaluate the likelihood ratio between all the mixtures. Using the log-
likelihood £, this amounts to:

L(i,! loga 18
@0 logm, — $[Nlog %y, — 275" rest (18)
Finally, the probability of drawing effect ® from mixture / is given by:
1
p() = (19)

S explL (i) = £(i.D)]

Software implementation. The algorithm was implemented in C++—11.0, with
the help of the templated matrix algebra library Eigen3>33 and Intel’s Threading
Building Blocks library34. Source code available in https://github.com/ctggroup/
BayesRRcmd.
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Simulation study of methylation data. We use a generative model of methylation
levels as in ref. 12, where the matrix O € R¥*M represents the methylation levels
for M probes in N individuals. This matrix can be decomposed in a matrix of K cell
proportions for N individuals, which we denote R € RN, and a matrix of cell-

specific methylation levels § € R¥*™. The decomposition assumes i.i.d. observa-
tion noise such that

0O=M+9 (20)

where the observation noise 9;; ~ N(O, Vf), such that i € (1... N) and j €
(1... M). The methylation level matrix M is decomposed in

M =RS (21)

For the simulation, each row i of R is distributed according to

r; ~ Dirichlet () (22)

and each of the methylation levels s; € IR are distributed as follows for the dif-
ferentially methylated probes (DMP)

s NN(OJ)(O, TZ)

being NV, (0.1) the truncated normal distribution with support [0, 1]. For the non-
DMP we set the methylation levels to a base value

For these simulations we relied on software kindly provided by the authors!2.
We performed a slight modification to be able to change the variance of the cell
proportions matrix P. For each simulation we generated a matrix of N = 2000 and
M =103,638. The simulation parameters were in accordance to!'%:

(23)

®  Proportion of differentially methylated probes (p).
®  Variance of the DMPs(1).

®  Variance of the cell proportions (sp).

®  Variance of the measurement noise (9)

We assume 100 probes exert an effect over phenotypic trait y, thus for each
probe selected we denote f3; as the effect corresponding to a probe, and their
respective effects are drawn from

By~ J\f(O7 UZ;)

the rest of the effects are assign a value of 0. Finally, we simulate y from the linear
model in which phenotype is determined by effects over the noiseless methylation

matrix: y = MB + ¢ with 07 =0.6 and 0} = {3 where the variance explained (VE)

by the probes amounts to 0.6. For each of the following scenarios, 15 simulations
were performed:

(24)

p €{0.1,0.3,0.7,0.9}, 7 = 0.07, sp = 1000,9 = 0.01

p =0.15,7 € {0.01,0.03,0.05,0.09}, sp = 1000, § = 0.01

p=0.15,7 = 0.07,sp € {0.001,0.1,1, 10,1000}, § = 0.01

p=0.15,7 = 0.07,sp = 1000, 9 € {0.01,0.025,0.05,0.075}, for this case the
simulated model consists of effects over the noisy methylation matrix Oy =
OB +e.

which amounts to 255 simulated data sets in total.

For each of the 270 simulations, we ran our method for the observed phenotype
y centered and scaled to variance 1, the observed methylation matrix O as inputs
and with mixture variances (0.1, 0.01, 0.001, 0.0001), for 20,000 samples with
10,000 samples of burn-in after which a thinning of 10 samples was used to select
samples of the posterior for the simulation. We selected trait-associated probes as
those that were in the model in >95% of the posterior samples, which we define as
95% posterior IP.

We used the following metrics to assess model performance: the correlation

between true effects and estimates (p(f, [3)), the slope of a regression of the
estimates on the true effects (/3/%[3)’ the number of genome-wide significant probes

identified (loci), the MSE, the MSE of the genome-wide significant probes (MSE),
the false discovery rate (FDR), the norm of the correlation vector between a
individual-level predictor made from the probe effects and the cell-type
proportions (||p(R, g)||), the correlation between the first principal component of
the probe data and the difference between the estimated and true effect (||p(P, R)||)
and the phenotypic variance attributable to the probes (afg). These statistics were
obtained for the simulations and shown in Supplementary Figs. 1-3.

Competing methods. For comparisons with our method we chose the common
EWAS methodology, which is derived from the GWAS methodology. For each
simulation replicate we ran the following models:

Single-probe least squares regression (GWAS): We conducted a set of 103,638
linear regressions using the function Im() from R version 3.4.2, and accepted the
effect sizes whose p value (t test) was <0.05/103638 (Bonferroni correction).

Single-probe least squares regression with sparse latent factors (ReFACTor):
Using the approach outlined in ref. 12, we selected five sparse components (one for
each cell type in the simulation) and estimated probe associations conditional upon
these one-by-one. We selected associated probes whose p value (¢ test) was less than
0.05/103638.

Single-probe mixed linear model association analysis (OSCA): Using the
approach outlined in!3, we used a linear mixed effects model where probe values
are used to calculate a co-variance matrix, which is then used in a REML approach
to estimate the proportion of phenotypic variance attributable to the probes, and
conditional upon this probe effects are estimated one-by-one. Although this
estimates probe associations conditional on the co-variance matrix, it does not
account for genome-wide co-variance across probes. We selected associated probes
whose p value (t test) was <0.05/103,638.

Multi-probe penalized regression with latent factors (LFMM): Using the
approach outlined in ref. 11, we ran LASSO and ridge regression with 10-fold cross-
validation using the default settings (with five latent factors, one for each cell type
in the simulation), whereas also fitting latent factors within the model that are
intended to control for cell-type proportion confounding. We used the
Ifmm_function and selected probes based on the calibrated p value (¢ test) whose p
value (t test) was <0.05/103,638.

Multi-probe penalized regression without latent factors (glmnet): We ran LASSO
and ridge regression with 10-fold cross-validation using the default settings of
package glmnet!® version 2.0-16. Previous experiments suggested that best
performance was achieved by leaving the phenotype vector y un-scaled.

Simulations of genotype and methylation effects. We simulated a methylation
matrix M with parameters p = 0.15, 7= 0.07, sp = 1000, 9 = 0.01 as above, with the
same number of SNPS as the methylation matrix (103,638). Then, we generated a
genotype matrix X € R'%*1%%® Eor each of the DMPS with non-zero effects in
M we select column j of X to have a correlated genotype by sampling its elements
from the distribution:

1
X, ~ Binomial | 2, ——— (25)
¥ 1+ exp(10 — ¢ x My)

by sampling ¢ from an uniform distribution between 20 and 25 for each column,
we achieve a pairwise genotype-methylation correlation between 0 and 0.6 for a
genotype column and a corresponding column of methylation profiles (for those
methylation probes with non-zero effects).

Having both matrices O (the noisy observations over matrix M) and X centered
and scaled, we generated 100 methylation effects ., ~ N(0,92), 100 large

genotypic effects f, ~ A(0, i) and 900 small genotypic effects B, ~ N (0, &p)-
Thus, the model for the simulated genotype is' y Of, + X, + €, with
e ~N(0,0.2).

We repeated the process 15 times to have 15 simulated data sets. For each of the
simulated data sets we ran our method for 200,00 samples, with a burn-in of 100,00
and a thinning of 10 samples. The mixture variances were set to (0.1, 0.01, 0.001,
0.0001) for methylation effects and to (0.01, 0.001, 0.0001, 0.00001) for genotype
effects. We compared out approach with LASSO and Ridge regression implemented
in glmnet!®, with a baseline of single marker regression (GWAS) where we first
adjusted the phenotype by the first 10 principal components of the genotype matrix
and then regressed the residuals against the scaled methylation matrix. The methods
were compared over the estimation of the true genetic and epigenetic VE and ability
to estimate the true effects. Results shown in Supplementary Fig. 4.

Generation Scotland. Generation Scotland: the Scottish Family Health Study is a
large population-based, family-structured cohort of over 24,000 individuals aged
18-99 years. The study baseline took place between 2006 and 2011 and included
detailed cognitive, physical, and health questionnaires, along with sample donation
for genetic and biomarker data. DNA methylation data from whole blood was
obtained on a subset of ~10,000 participants. The Illumina HumanMethylationEPIC
Bead Chips array was used to measure methylation and quality control details have
been reported previously?’. In briefly, outliers based on the visual inspection of
methylated to unmethylated log intensities were excluded, along with poorly per-
forming probes and samples, and sex mismatches (predicted based on genetics versus
questionnaire data) yielding an analysis data set of 9448. As reported in McCartney
et al.?%, further filtering was performed to exclude non-autosomal CpG sites and sites
that were exclusive to the EPIC array. This allowed for the predictors to be applied to
data sets that collected DNA methylation using an earlier version of the Illumina
arrays (450 k array) giving a total of 370,262 probes.

After the quality control steps described above, we integrated the SNP marker
and methylation matrices, along with the log-transformed age and the sex of the
individuals (encoded as 1 for Female). All matrices and phenotypes were centered
and scaled to variance 1. The data were used as input for our Bayesian model, with
parameters (0.0001, 0.001, 0.01) for genetic effects mixtures variances and (0.01, 0.1,
1) for the epigenetic effects, age, and sex. Four chains for each trait with different
starting values were executed. We assessed the convergence of the hyperparameters
02,0%,0% through the Geweke test®® and the R criteria®, with the help of the R
package ggmemc?’, see Supplementary Figs. 5-14. As result, the algorithm yielded a
set of samples over the posterior distribution of effects conditioned on the observed
phenotype, the genetic and epigenetic probes and controlled by age and sex. We
further scaled in each sample the hyperparameters o2, 6%, and ‘7520 by dividing each
one by their sum (02 + 0% + Ué). The posterior distribution is summarized in
Supplementary Table 1 for BMI and Supplementary Table 2 for smoking. IP were
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computed by counting the times a probe is present in the model (in any of the
mixtures) and divided by the total number of posterior samples. We performed the
same procedure but adding the first 20 PCs of the DNA methylation matrix, the first
20 PCs of the genotype matrix along with the cell composition of the samples as
extra 46 covariates. We regressed the mean of the posterior effect sizes of the model
without these covariates against the model with these covariates. The mean effect
sizes are practically identical for BMI and smoking, with an R? of 0.97 slope of 0.99
for BMI and R? of 0.99 slope of 1 for smoking.

We then contrasted the variance explained by the first five PCs of the probes
with 95% PIP in BMI and smoking, to predict their respective phenotypes. We
found that these first five PCs in BMI probes do not have predictive power for BMI,
thus, this suggests that the main axis of variation of these probes with 95% PIP do
not explain as much of the phenotype as the whole set of probes with 95% PIP for
BMIL. For smoking the five PCs derived from the probes with 95% PIP for the same
phenotype explain ~44% of the variance. We further verified that the predictive
power of the 46 covariates (genetic and methylation PCs, along with cell-count
effects) explain 7% variance in BMI and 10% variance in smoking. We observed
that the first PC for the probes with 95% PIP for BMI is highly correlated with cell
counts (Supplementary Fig. 19), the fact that these PCs do not explain much
variance in BMI suggests that these correlations are not meaningful for predicting
the phenotype. For smoking, it is clear that the PCs of the probes with 95% PIP and
the cell counts are weakly correlated (Supplementary Fig. 20), thus the predictive
power for these PCs seems to be not aligned to cell-counts effects. These analyses
suggest that for BMI the probes with 95% PIP do not explain together as much
variance as the analogous probes for smoking, that the variance explained by the
probes with 95% PIP is almost the same as the variance explained by their PCs and
that in both cases, their predictive power seems to be independent to their
correlation with cell counts.

These results, stability of estimates even after adjusting for confounders, and
predictive power independent to cell counts, support our conclusions that the
learned model’s effect carry information over the traits of interest.

Enrichment analysis. Probes were associated to their respective gene ENTREZ
identifiers using the R packages IlluminaHumanMethylation450kanno.ilmn12.
hg1938 and biomaRT3’. We provide a list of each gene with IP >5% for BMI
Supplementary Table 4, and for smoking Supplementary Table 5.

Then, we associated the mapped genes with their respective terms in the Gene
Onthology (GO) using the R package?. With these probe-terms associations we
computed enrichment as defined by:

p.PVE

enrichment =
p-Term

(26)

with p. PVE being the proportion of variance explained by probes associated with
the term, having Bt being the effects associated with the term and being Basoder
the effects in the model (that is, those which are not coming from the spike at zero)
in the current sample, we have

zTermﬁZ
PPVE = S )™ (27)
E ﬁModel

and p.Term being the proportion of probes mapping to the term among all the
probes mapping to a term in the current sample. Having #probesr,,,, being the
number of probes mapping to a term and #probesyoq.; the number of probes in the
model in the current sample, we have

#probesyyy
#prabesMudel

We also computed the IP for a term by counting the times a term appears in the
model and dividing by the number of samples. Finally, given that we have a
posterior distribution over enrichment values, we adopt the ROPE decision rule?3,
for which, we accept the hypothesis that a term is significantly over/under-enriched
if 95% of the posterior mass for the enrichment value is outside the interval (0.5,
1.5) and the term has an IP >95%. Significantly enriched GO terms are presented
in the Supplementary Information.

p-Term = (28)

Estimates for replication. For both BMI and smoking, the posterior samples over
effects where averaged and associated to their respective probe and SNP identities.
For each replication cohort, a predictor was built by multiplying the posterior mean
effects by the corresponding centered and scaled genetic and epigenetic marker
readings, and predictive ability measured over the scaled and centered cohort trait
was measured using the R? statistic.

Lothian Birth Cohort 1936. The Lothian Birth Cohort 1936 is a longitudinal study
of aging®!. It follows 1091 members of the 1947 Scottish Mental Survey, who were
recontacted in later life, when they were living in the Edinburgh area of Scotland.
The cohort members were all born in 1936 and have been assessed for a wide

variety of health and lifestyle outcomes at ages 70, 73, 76, 79, and 82 years. DNA
has been collected at each clinical visit. In the present study, we considered DNA
methylation data (Illumina 450 k array) from whole blood, taken at mean age 70,
for analysis. Details of the collection and processing of the data have been reported

previously?®. In brief, after quality control to remove poorly performing methy-
lation sites, samples, and individuals with mismatching genotypes or predicted sex,
a sample of 906 individuals was available for prediction analysis. The genotype and
methylation matrices were processed as with GS, given that the posterior effect
sizes for age and sex were equal to zero for both traits, they were not included.

The UK adult twin Registry. The TwinsUK registry consists of over 14,000 research
volunteer twin participants from the United Kingdom who have joined since 1992,
with equal numbers of same-sex monozygotic and dizygotic twin pairs who are
predominately female (84%). Data are collected through longitudinal questionnaires
and clinical visits. The registry collects biological samples and further data collected
through analysis of biological samples. DNA methylation profiles were generated
using the Infinium HumanMethylation450 BeadChip in adipose tissue biopsies and
whole-blood samples from TwinsUK participants. Adipose tissue DNA methylation
data were generated from subjects who were free from severe diseases, as previously
described*2. Whole-blood DNA methylation profiles have previously been descri-
bed*3. Additional data processing steps for this project included use of ENmix** for
quality control and minfi*’ to exclude samples with median methylated and unme-
thylated signals below 10.5. After data-quality control, covariate assessments, and
sample processing, downstream analyses were carried out in 540 adipose (mean age
59, age range 28-85, 100% female) and 977 whole blood (mean age 58, age range
19-82, 97% female) TwinsUK samples. Ethical approval was granted by the National
Research Ethics Service London-Westminster, the St Thomas’ Hospital Research
Ethics Committee (EC04/015 and 07/H0802/84). All research participants provided
written informed consent prior to taking part in the study.

Avon Longitudinal Study of Parents and Children. Samples were drawn from the
Avon Longitudinal Study of Parents and Children6,*”. Blood from 1018
mother-child pairs (children at three time points and their mothers at two time
points) were selected for analysis as part of the Accessible Resource for Integrative
Epigenomic Studies (ARIES, http://www.ariesepigenomics.org.uk/)*8. Following
DNA extraction, samples were bisulphite converted using the Zymo EZ DNA
Methylation kit (Zymo, Irvine, CA, USA). Following conversion, genome-wide
methylation was measured using the Illumina Infinijum HumanMethylation450
(HM450) BeadChip. The arrays were scanned using an Illumina iScan, with initial
quality review using GenomeStudio. ARIES was preprocessed and normalized using
the meffil R package*®. ARIES consists of 5469 DNA methylation profiles obtained
from 1022 mother—child pairs measured at five time points (three time points for
children: birth, childhood, and adolescence; and two for mothers: during pregnancy
and at middle age). Low-quality profiles were removed from further processing, and
the remaining 4593 profiles were normalized using the Functional Normalization
algorithm>? with the top 10 control probe principal components. Full details of the
preprocessing and normalization of ARIES have been described previously*°.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data are available upon request from the cohort authors with appropriate research
agreements.

Code availability

BayesRR R implementation and full open source code is available at: https://github.com/
ctggroup/bayesRRcpp. BayesRR is also implemented as part of the command line tool
BayesR+- at: https:/github.com/ctggroup/bayesRRcmd. Simulation scripts and post-
processing scripts can be found here: https://github.com/ctggroup/BEpigenetics.
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