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Abstract In this paper, amino acid compositions are
combined with some protein sequence properties (physio-
chemical properties) to predict protein structural classes. We
are able to predict protein structural classes using a mathe-
matical model that combines the nearest neighbor algorithm
(NNA), mRMR (minimum redundancy, maximum rele-
vance), and feature forward searching strategy. Jackknife
cross-validation is used to evaluate the prediction accuracy.
As a result, the prediction success rate improves to 68.8%,
which is better than the 62.2% obtained when using only
amino acid compositions. Therefore, we conclude that the
physiochemical properties are factors that contribute to the
protein folding phenomena and the most contributing fea-
tures are found to be the amino acid composition. We expect
that prediction accuracy will improve further as more
sequence information comes to light. A web server for pre-
dicting the protein structural classes is available at http://
app3.biosino.org:8080/liwenjin/index.jsp.

Keywords Protein structural class - Nearest neighbor
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Introduction

Three-dimensional (3-D) structures of proteins are closely
related to their primary structure—their amino acid sequence.
For many years scientists have tried to develop a predic-
tion model to correlate amino acid sequences to the protein
structures. Although early prediction studies only used amino
acid compositions without amino acid sequence data [1-7],
one study was capable of predicting a 3-D protein structure
with 84% accuracy [8]. With the realization that amino acid
sequences contribute factors to increase the accuracy of pro-
tein folding predictions, many researchers added more infor-
mation related to the sequence, such as the pseudo amino
acid compositions which involve not only amino acid com-
positions but also the sequence-order and length information
[9], hydropobicity, polarity and distribution of certain amino
acids [10-13] to enhance the prediction capability. Recently,
Ding [14] employed eight physiochemical features to con-
struct pseudo amino acid compositions and managed to gain
92.6% prediction accuracy using dual-layer fuzzy support
vector machine (FSVM) network. Ding’s work only covered
204 proteins and four structural classes: all-« all-g, o/ B and
o+ B.

This paper does not aim for an increase in the prediction
rate. Instead, we are investigating whether combining the
physiochemical properties and amino acid compositions are
better than using amino acid compositions alone in predicting
the protein structural classes. We will also test the hypothesis
that the physiochemical properties, derived from the amino
acid sequence arrangement, contribute more to the prediction
of protein structural classes than using the amino acid com-
positions alone. We will demonstrate that, by combining the
mRMR (Minimum Redundancy, Maximum Relevance) [15]
and forward feature selections, we are able to first optimize
the prediction model and second increase the efficiency of
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building the prediction model. Instead of the traditional four
structural classes we extend them to seven structural classes,
which include all-«, all-8, o/B, o + B, multi-domain pro-
teins, membrane and cell surface proteins, small proteins. We
alsouse a fairly large data set with 12520 proteins to minimize
the defect of getting a high correct prediction rate by chance.
Nearest neighbor algorithm (NNA) [16] is used to predict
which structural class a query protein should be placed.

Materials and methods
Dataset

According to the SCOP (“Structural Classification of Pro-
teins”) [17-19], proteins belong to seven structural classes:
all alpha proteins (all-«), all beta proteins (all-8), alpha and
beta proteins («/f), alpha and beta proteins (o + 8), multi-
domain proteins (y ), membrane and cell surface proteins (6),
and small proteins (¢). The dataset we are using, including
2299 all-«r, 3334 all-B, 3086 o/, 2870 o + B, 224 y, 227 4,
and 984 ¢, isreleased by ASTRAL (release 1.71, 2007, http://
astral.berkeley.edu/) [20-22]. After removing the proteins
whose sequence containing unnatural amino acids, we get
the refined dataset with 2270 all-o, 3199 all-g, 2842 o/,
2812 o+ ,213 y,222 §, and 962 ¢ —totally 12520 proteins
(refer to Table 1 and supplemental material 1).

Combined protein sequence descriptors

Each protein is represented as a 111-dimensional vector
which consists of 20 amino acid compositions and 91 physio-
chemical features. The physiochemical features include the
properties of: hydrophobicity, normalized Van Der Waals
volume, polarity, polarizability and solvent accessibility.

(1) Amino acid compositions: the percentage of each of
the normal 20 amino acids occurring in the whole sequence.

(2) Hydrophobicity, normalized Van Der Waals volume,
polarity and polarizability: global description of the amino

Table 1 Description of the

dataset Class Original  Dataset
dataset after
refinement

All-a 2299 2270
All-B 3334 3199
ol 3086 2842
a+p 2870 2812
.. . y 224 213
The original dataset is from s 227 57
ASTRAL SCOP release 1.71 ¢ 084 062
and the refined dataset used in Overall 13006 12520

this study
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acid sequence can be used to obtain 21 features for each of
these properties [10,23].

The method for obtaining global properties such as
hydrophobicity are as follows: First, each amino acid is
classified into three categories — polar, neutral and hydropho-
bic amino acid [23]. For a given protein sequence, the polar
amino acids, R,K,E,D,Q,N, are substituted by character P, the
neutral amino acids, G,A,S,T,P,H,Y, are substituted by char-
acter N, and the hydrophobic amino acids, C,V,.L,LM,EW,
are substituted by character H. Thus each protein property
sequence is a sequence of P, N, and H, instead of amino
acids. Then, composition (C) is taken as the percentage of
P, N or H; transition (T) is defined as the changing frequency
between two different properties (such as the transition from
Pto N, or P to H, or H to N); distribution (D) is defined as
how much of the protein sequence is needed to contain 25%,
50%, 75% and 100% of the Ps, Ns and Hs, respectively. An
example below shows how these percentages and how all 21
features are obtained.

Suppose a property sequence under examine contains
9 Ps, 16 Ns and 11 Hs (totally 36), as showed in Fig. 1. The
compositions (C) for P, N and H are (9/36) x 100% = 25%,
(16/36) « 100% = 44.4% and (11/36) %« 100% = 30.6%,
respectively. The numbers of transitions between P and N,
between P and H and between N and H are 9, 7, and 10,
respectively. Therefore, the three transitions (T) between P, N
and H are (9/36) x 100% = 25%, (7/36) x 100% = 19.4%
and (10/36) x 100% = 27.8%, respectively. In this case, we
search P in the property sequence from N terminal to C ter-
minal. The first P appears in the 4th of the property sequence,
i.e. the length of the first segment is 4. Therefore, the first dis-
tribution (D) value for P is (4/36) % 100% = 11.1%. When
the 25% of Ps are included, the length of the segment is 5. The
second distribution (D) value for P is thus (5/36) x 100% =
13.9%, and so forth. The third, forth and fifth distribution
(D) values are (13/36) x 100% = 36.1%, (22/36) * 100% =
61.1% and (34/36) %« 100% = 94.4%, respectively. Sim-
ilarly, the five distribution values for N are 2.8%, 27.8%,
47.2%, 75%, 97.2%, and the five distribution values for
Hare 5.6%, 8.3%,41.7%, 80.6%, 100%. Therefore, the prop-
erty sequence derived from hydrophobicity property can pro-
duce 21 features: 3 for composition C(0.25, 0.444, 0.306),
3 for transition T(0.25, 0.194, 0.278) and 15 for distribution
D(0.111, 0.139, 0.361, 0.611, 0.944, 0.028, 0.278, 0.472,
0.75, 0.972, 0.056, 0.083, 0.417, 0.806, 1).

Using the same way described above, the 21 features can
be obtained from each of the other three physiochemical
properties: normalized Van Der Waals volume, polarity and
polarizability, respectively.

(3) Solvent accessibility: residues of a protein can be
divided into two group (buried and exposed). A residue is
considered as exposed if the percentage of the exposed sur-
face is larger than 20%. The solvent accessibility of a protein
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property sequence N H H P
sequence NO. 1 5 10 15
P numbering 1 2 3 4

N numbering 1 2 3 4 5 6

H numbering 1 2 3 4 5
P-N transition 1 2 3

P-H transition 1 2 3

N-H transition 1 2 3 4 5

PHNNPNNHPNHNNPHNNPHPNPNNHNNHHPNH

20 25 30 35
5 6 7 8 9
8 9 10 11 12 13 14 15 16
6 7 8 9 10 11
4 5 6 7 8 9
4 5 6 7
6 7 8 9 10

Fig. 1 Analyzing property sequence derived from hydrophobicity property

is obtained by PredAcc [24] in this study. We denote the
exposed residues and exposed residues with gamma risks as
E, and the hidden residues and hidden residues with gamma
risks as H, from which we can obtain a property sequence
with only E and H. Only composition for H, transition
between H and E, and five distributions for H are considered
as useful features (totally 7) to avoid feature redundancy [10].
In conclusion, the total number of features is 20+21 x4+
7 = 111 (see Table 2). Each protein sequence is transferred
into 111-dimensional vector (see supplemental materials 2),
which needs to be normalized by the following equations:

nj = Zvij/n (D
i=1
Sj= | D ij—pp?/n—1 2
i=1
Vi — W
Vi = 7 3)
J Sj

where v;; is the value of the jth feature in the ith protein, n
is the total number of proteins, S; is the standard deviation
of the jth feature, and V;; is the normalization value of jth
feature in the ith protein.

Minimum redundancy-maximum relevance (mRMR)
[15,25]

Feature selection can very effectively reduce the feature
dimensions, improve a learning machine’s generalization,

Table 2 Feature distribution

Sequence The number of features  Total
properties in certain property
C T D

Amino acid composition 20 20
Hydrophobicity 3 3 15 21
Normalized Van Der Waal volume 3 3 15 21
Polarity 3 3 15 21
Polarizability 3 3 15 21
Solvent accessibility 1 1 5 7

facilitating the data mining task. We choose mRMR feature
selection algorithm because it is able to balance the mini-
mum redundancy and the maximum relevance in a simple
and elegant mathematical way. The maximum relevance part
looks for features that contribute most to the classification,
and the minimum redundancy part tries to exclude the fea-
tures whose prediction capability has been included by the
already selected features. The algorithm is described briefly
as below:

Given a dataset Q2 including all features, we are seeking a
subset S of the features to satisfy both the minimum redun-
dancy and the maximum relevance conditions.

Firstly, the mutual information / of two variables x and y
is defined as:

I(x.y) = > P(xi,yj)log
i,J

P(xi,yj)

NS 4
P(x;)P(y;) “@

where P(x;, y;) is the joint probabilistic distribution of x;
and y;; P(x;) and P(y;) are the marginal probabilities of x;
and y;, respectively.

The minimum redundancy is calculated as:

. 1

min Wi, Wi = w5 D 1)) )
i,jesS

where |S| is the number of features inS, W;is the minimum

redundancy value.

For the targeted classes h = {hy, h2, ..., hi} (i.e.theclass
variable), the relevance between feature i and the targeted
class variable & can be quantified by the mutual information
I (h, x;) between h and the feature variablex;. The maximum
relevance can be obtained by the following formula:

1

mZm,xn (6)

max Vi, Vi =
SCQ .
ieS

where V; is the maximum relevance value.
In order to optimize both Eqgs. 5 and 6, mRMR is accom-
plished by the following steps:

(1) Select a single most relevant feature according to Eq.
6, i.e. select feature i such that 7 (A, x;) is higher than
other features.

max I (x;, h) @)
e
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Fig. 2 The accuracy curves

produced by the mRMR features

(Black Square) and the forward

feature searching method from 0.65 7

the 19th feature (Grey Triangle) __/

0.55

0.45

Accuracy
T —

[=]
W
w

where 2 is the whole feature set.

(2) The rest features are selected by adding one additional
feature i each time to § to satisfy either of the two
conditions in (8) and (9):

1
I1(h, xij) — — I(x;i, xj

®)

1
{gg)é[l(h,xi)/mgl(xi,xj)] )

where Q2; = Q—§, representing the set of features that are yet
to be selected. The Eq. 8 is called MID (mutual information
difference criterion) selection criterion, while the Eq. 9 is
called MIQ (mutual information quotient criterion) selection
criterion. In this research, we choose Eq. 8 as the selection
criterion.

The mRMR feature selection is fulfilled without the
involvement of a prediction model, which can be performed
very quickly. However, the optimization of feature selection
through mRMR does not guarantee the selected features are
also best for a particular prediction model. We describe a
common feature selection strategy which involves a predic-
tion model as below.

Forward feature searching strategy
Given a whole feature set €2, and an initially selected feature

subset S(S C ), the rest features can be selected by adding
an additional feature 7, such that SU{i} satisfies the following

@ Springer

e

forward feature searching = the mRMR features

B e T T
- Batttn, - e
WM*H-—-—...(' —

41 61 81 101
the number of features

condition:

max A(S U {i}) (10)
i€Qg

where A (S U {i}) means the prediction accuracy obtained by
the prediction model evaluated by an evaluation method such
as the jackknife test.

Results and discussion

As described in Sect. “Combined protein sequence descrip-
tors”, each protein is represented by a 111-dimentional space.
Thus the 12520 proteins can be expressed by a 12520 * 111
matrix (shown in supplemental material 2). Using mRMR
method (see Sect. “Minimum redundancy-maximum
relevance”), we obtain two feature lists (see supplemental
material 3): the first list, named as maxRel features, showing
the features in maximum relevance order, and the second list,
named as mRMR features, showing the features selected by
Eqgs. 7 and 8 in a selection order. In order to find out how
many foremost features in the mRMR feature list should be
included for the prediction model, we add one feature at a
time from the list in order and obtain the prediction accuracy
for the selected features using jackknife test. In this study,
we choose to run all the features in the list and gain the
optimized feature subset that achieves the highest prediction
accuracy. A scheme is designed to adjust between finding
global prediction accuracy and local prediction accuracy if
one encounters a large feature set. As a result, the highest
accuracy is found to be 66.8% and it takes place when the
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Table 3 The order and name of mRMR features with the prediction accuracies evaluated by jackknife cross-validation test

1 AA_composition_C 0.18131 57 Hydrophobicity_transition_PH 0.652476
2 Solvent_composition_H 0.325799 58 Polarity_distribution_N-1.0 0.650799
3 AA_composition_L 0.369329 59 Polarizability_distribution_N-1.0 0.649361
4 Polarity_composition_H 0.400639 60 Hydrophobicity_distribution_P-0.75 0.651118
5 AA_composition_V 0.425479 61 Polarity_distribution_H-0.0 0.650639
6 AA_composition_T 0.458626 62 Hydrophobicity_transition_PN 0.654712
7 VanDerWaal_composition_N 0.483946 63 Polarity_composition_N 0.654633
8 AA_composition_A 0.518211 64 AA_composition_Y 0.656629
9 AA_composition_G 0.547764 65 Polarity_distribution_P-0.25 0.661022
10 AA_composition_S 0.558866 66 AA_composition_R 0.664297
11 AA_composition_M 0.570607 67 Hydrophobicity_distribution_H-1.0 0.66262
12 VanDerWaal_distribution_N-0.25 0.574601 68 AA_composition_K 0.665575
13 Solvent_distribution_H-0.0 0.579073 69 Hydrophobicity_distribution_H-0.75 0.668211
14 AA_composition_W 0.59369 70 Polarity_distribution_H-1.0 0.666613
15 VanDerWaal_composition_P 0.6 71 Hydrophobicity_distribution_N-1.0 0.663578
16 Solvent_distribution_H-0.75 0.601118 72 Polarity_transition_PN 0.665575
17 VanDerWaal_distribution_H-0.0 0.606629 73 Polarizability_distribution_N-0.5 0.664457
18 AA_composition_E 0.612859 74 AA_composition_F 0.663419
19 VanDerWaal_distribution_N-1.0 0.613898 75 Polarity_distribution_N-0.75 0.665575
20 Solvent_transition_HE 0.613099 76 Hydrophobicity_distribution_H-0.25 0.663259
21 Solvent_distribution_H-0.25 0.620687 77 VanDerWaal_transition_ PN 0.661901
22 AA_composition_P 0.631629 78 Polarity_distribution_H-0.5 0.664137
23 VanDerWaal_distribution_N-0.0 0.632428 79 AA_composition_Q 0.66278
24 VanDerWaal_distribution_N-0.5 0.635064 80 Polarity_transition_ NH 0.660863
25 Hydrophobicity_composition_H 0.640096 81 VanDerWaal_distribution_P-0.0 0.659505
26 Hydrophobicity_distribution_N-0.0 0.637141 82 Polarizability_distribution_P-0.25 0.659505
27 Polarity_distribution_P-0.0 0.638578 83 Polarizability_composition_P 0.659425
28 Hydrophobicity_composition_P 0.63746 84 Hydrophobicity_distribution_P-1.0 0.658786
29 AA_composition_I 0.640096 85 Polarity_distribution_H-0.25 0.660304
30 Solvent_distribution_H-0.5 0.638658 86 Polarity_distribution_P-0.5 0.658866
31 VanDerWaal_transition_ NH 0.644089 87 Polarizability_composition_N 0.657508
32 VanDerWaal_distribution_N-0.75 0.642572 88 Polarity_distribution_N-0.5 0.658946
33 Polarizability_distribution_P-1.0 0.642013 89 Polarity_transition_PH 0.656869
34 VanDerWaal_distribution_H-1.0 0.640974 90 Polarity_distribution_H-0.75 0.65599
35 AA_composition_D 0.646086 91 VanDerWaal_distribution_H-0.25 0.655911
36 Polarizability_distribution_P-0.0 0.646965 92 Polarizability_distribution_N-0.75 0.655751
37 Polarizability_distribution_N-0.0 0.644728 93 Polarity_distribution_N-0.25 0.652476
38 Hydrophobicity_composition_N 0.647684 94 Hydrophobicity_distribution_N-0.75 0.653994
39 Polarizability_distribution_H-0.0 0.645767 95 AA_composition_N 0.658626
40 Solvent_distribution_H-1.0 0.644808 96 VanDerWaal_distribution_H-0.75 0.657268
41 VanDerWaal_transition_ PH 0.644728 97 Polarizability_composition_H 0.658466
42 Hydrophobicity_distribution_P-0.0 0.645927 98 Polarizability_transition_PH 0.659744
43 Polarizability_distribution_N-0.25 0.644968 99 VanDerWaal_distribution_P-0.25 0.659665
44 Hydrophobicity_transition_NH 0.64369 100 Hydrophobicity_distribution_P-0.5 0.658946
45 Hydrophobicity_distribution_H-0.0 0.641134 101 Polarizability_transition_PN 0.659185
46 Polarity_distribution_P-0.75 0.647923 102 VanDerWaal_distribution_P-1.0 0.655351
47 Polarity_distribution_N-0.0 0.64377 103 Hydrophobicity_distribution_N-0.5 0.657827
48 Polarizability_distribution_P-0.75 0.64361 104 VanDerWaal_distribution_P-0.75 0.654712
49 Hydrophobicity_distribution_P-0.25 0.645927 105 VanDerWaal_distribution_H-0.5 0.654393
50 Polarity_composition_P 0.648163 106 VanDerWaal_distribution_P-0.5 0.653035
51 Polarity_distribution_P-1.0 0.647843 107 Hydrophobicity_distribution_N-0.25 0.651997
52 AA_composition_H 0.651278 108 Polarizability_distribution_H-0.75 0.651358
53 Polarizability_distribution_H-0.25 0.654073 109 VanDerWaal_composition_H 0.651837
54 Hydrophobicity_distribution_H-0.5 0.653195 110 Polarizability_transition_NH 0.654872
55 Polarizability_distribution_H-1.0 0.652955 111 Polarizability_distribution_H-0.5 0.654952
56 Polarizability_distribution_P-0.5 0.651757

AA_composition_C means the amino acid composition of amino acid C, solvent_composition_H is the H compositon obtained from the solvent
accessibility of proteins, and so forth. The highest accuracy is 66.8%, which takes place when the 69th feature is added in

@ Springer



176 Mol Divers (2008) 12:171-179
Fig. 3 The accuracy curve 0.7
using only amino acid
compositions: one feature is
added each time in the order e
listed in the mRMR features 0.6
0.5
0.4
g
[
g
b
0.3
0.2
0.1
0 ; : : : : : : ;
1 3 7 9 11 13 15 17 19

69th feature is added (see Fig. 2, Table 3). We also carry out
a prediction using pure amino acid compositions in the same
way as the 111-dimensional features. The highest accuracy
is 62.2% (see Fig. 3) when all 20 amino acid compositions
are included. We conclude that physiochemical properties
do provide some extra prediction capability to the original
amino acid compositions.

As we mentioned above, the mRMR method does not
involve the mathematical prediction model. An issue is then
brought forth how to combine mRMR method with forward
feature searching method. The mRMR method is good at
fast computation while the forward feature searching method
is more accurate and often provides better selection results.
The mRMR method can provide an initial optimized feature
selection quickly, and the time for processing the forward
feature selection is polynomial to the size of a feature set. In
this study, we choose to select the foremost features using
mRMR method and the rest features using forward feature
selection method. Our choice may not be optimized as there
are more ways to combine them to balance between speed
and accuracy. Our method best compares the forward fea-
ture selection and the mRMR in parallel curves as described
below. We choose the first 18 features of mRMR features
(see Table 3) as the initial feature subset, which has reduced
some computation burden left for the forward feature selec-
tion method. The first 18 mRMR features are chosen mainly
because they continuously give an ascending accuracy curve
until it achieves an accuracy of 61.3%. Then, we search the
rest of the features using forward feature searching strategy,

@ Springer

the number of features

and gain an accuracy of 68.8% when 37 features are selected
(see Fig. 2; Table 4). If more than 37 features are selected,
the prediction model suffers more from the overfitting prob-
lem and the prediction accuracy deteriorates as the number of
features increases. By comparing the two curves after the 18
features are selected in the x axis in Fig. 2, the forward fea-
ture selection method does provide better feature selection
results as the compensation of more computation. Could one
divide the features from mRMR method into several frag-
ments and use the forward feature selection method in each
of those fragments? This aspect will be investigated in the
future.

Table 5 lists the 22 foremost features taken from the
maxRel features (i.e. the maximum relevant part in the
mRMR feature selection). The foremost 18 mRMR features
can all be found in these 22 maxRel features. This tells that
the maximum relevance is weighted strongly towards build-
ing the mRMR features. One could introduce a weighting
parameter in Eqgs. 8 or 9 to adjust the balance between maxi-
mum relevance and the minimum redundancy. In this study,
the maxRel features were weighted strongly. We will
leave the study of the balance between maximum relevance
and the minimum redundancy in the future.

The arrangement of the amino acids in the protein impart
more information than the amino acid composition alone.
Therefore, we hypothesize that the physiochemical proper-
ties derived from the sequence arrangement should contribute
more to the prediction of protein structural classes. Along
with testing the hypothesis, we have also done the feature



Mol Divers (2008) 12:171-179

177

Table 4 The order and names of the features selected by the forward feature searching method with the prediction accuracies evaluated by the
jackknife cross-validation

0NN W~

=]

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

AA_composition_C
Solvent_composition_H
AA_composition_L
Polarity_composition_H
AA_composition_V
AA_composition_T
VanDerWaal_composition_N
AA_composition_A
AA_composition_G
AA_composition_S
AA_composition_M
VanDerWaal_distribution_N-0.25
Solvent_distribution_H-0.0
AA_composition_W
VanDerWaal_composition_P
Solvent_distribution_H-0.75
VanDerWaal_distribution_H-0.0
AA_composition_E
AA_composition_R
AA_composition_F
AA_composition_D
AA_composition_Y
AA_composition_P
AA_composition_Q
Hydrophobicity_distribution_P-0.25
Hydrophobicity_transition_PH
Hydrophobicity_distribution_P-1.0
AA_composition_N
Solvent_distribution_H-1.0
Hydrophobicity_composition_P
Polarity_transition_PN
Polarizability_transition_PH
Solvent_transition_HE
Polarity_distribution_H-0.75
Polarizability_distribution_P-0.5
AA_composition_H
Polarizability_distribution_H-0.0
VanDerWaal_distribution_N-1.0
Polarity_composition_N
Hydrophobicity_distribution_P-0.75
Polarity_distribution_P-0.75
Hydrophobicity_distribution_P-0.0
Hydrophobicity_distribution_P-0.5
Polarity_distribution_H-0.0
Polarizability_distribution_H-1.0
Polarity_transition_PH
Polarity_composition_P
Polarity_distribution_P-0.0
Hydrophobicity_distribution_N-0.0
AA_composition_K
Polarity_distribution_N-0.75
Polarity_distribution_N-0.5
VanDerWaal_distribution_N-0.0
Hydrophobicity_composition_N
Polarizability_composition_P
VanDerWaal_transition_ PN

0.18131
0.325799
0.369329
0.400639
0.425479
0.458626
0.483946
0.518211
0.547764
0.558866
0.570607
0.574601
0.579073
0.59369
0.6
0.601118
0.606629
0.612859
0.623802
0.636422
0.641933
0.647843
0.653035
0.657987
0.66238
0.668291
0.671086
0.67492
0.675399
0.675399
0.677955
0.679792
0.680751
0.68107
0.684185
0.686262
0.688419
0.688419
0.688339
0.688259
0.688179
0.686981
0.686981
0.685623
0.685863
0.685783
0.686661
0.686422
0.685942
0.686981
0.686182
0.687061
0.686102
0.686342
0.684585
0.684105

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
71
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

Hydrophobicity_composition_H
VanDerWaal_distribution_N-0.5
Hydrophobicity_distribution_H-0.25
Hydrophobicity_distribution_N-0.5
Polarity_distribution_H-0.25
Polarity_distribution_P-0.25
Polarizability_distribution_P-0.25
Polarity_distribution_P-0.5
Polarity_distribution_P-1.0
AA_composition_I
Hydrophobicity_distribution_N-0.75
Polarity_distribution_H-1.0
VanDerWaal_transition_NH
Polarizability_distribution_N-0.5
Hydrophobicity_distribution_H-1.0
Hydrophobicity_transition_NH
Hydrophobicity_distribution_H-0.75
Hydrophobicity_distribution_N-1.0
VanDerWaal_distribution_H-0.5
VanDerWaal_transition_ PH
Polarizability_composition_H
Polarizability_transition_NH
Hydrophobicity_transition_PN
Polarizability_distribution_P-1.0
Hydrophobicity_distribution_H-0.5
Polarizability_transition_PN
Polarity_distribution_H-0.5
VanDerWaal_distribution_H-0.75
Solvent_distribution_H-0.5
VanDerWaal_distribution_P-0.25
Polarizability_distribution_N-1.0
Polarizability_distribution_P-0.0
VanDerWaal_distribution_P-0.5
Solvent_distribution_H-0.25
Polarity_distribution_N-1.0
VanDerWaal_composition_H
Polarizability_distribution_H-0.5
Polarity_distribution_N-0.25
Hydrophobicity_distribution_H-0.0
Polarizability_distribution_N-0.0
Polarizability_distribution_N-0.25
VanDerWaal_distribution_H-1.0
VanDerWaal_distribution_N-0.75
Polarizability_composition_N
Polarizability_distribution_N-0.75
VanDerWaal_distribution_P-0.0
VanDerWaal_distribution_P-0.75
Polarizability_distribution_P-0.75
Polarity_distribution_N-0.0
Polarizability_distribution_H-0.75
Polarity_transition_NH
Hydrophobicity_distribution_N-0.25
VanDerWaal_distribution_P-1.0
VanDerWaal_distribution_H-0.25
Polarizability_distribution_H-0.25

0.682748
0.681789
0.681949
0.682189
0.682029
0.682109
0.681949
0.68131

0.68123

0.681629
0.68123

0.680431
0.680272
0.680032
0.680351
0.680671
0.679473
0.680511
0.68099

0.679553
0.678674
0.678754
0.677556
0.678594
0.678434
0.678355
0.677077
0.676198
0.675639
0.676198
0.67516

0.675399
0.67524

0.673642
0.673083
0.672204
0.671166
0.670367
0.670288
0.669409
0.669249
0.66845

0.667332
0.666773
0.665575
0.665895
0.664697
0.663259
0.661821
0.659984
0.657907
0.657029
0.65599

0.655032
0.654952

The first 18 features come from mRMR features. The highest accuracy is 68.8%, which takes place when the 37th feature is added in. Please refer
to the footnote in Table 3 for the meaning of the feature names
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analysis. The 18 most relative features mainly consists of
amino acid composition, solvent accessibility and normal-
ized Van Der Waals volume, with the number being 9, 4 and
3, respectively (see Table 5). There is no doubt that amino
acid composition is vital for maintaining the function of pro-
teins [26,27]. From Table 5, the most contributing features
are amino acid compositions: in the first 5 features, 3 of
them are amino acid compositions; in the first 10 features,
7 of them are amino acid compositions; in the first 15 fea-
tures, 9 of them are amino acid compositions. Among the
selected 37 features, 18 of them are amino acid compositions.
In all cases, the amino acid compositions occupy about half
or more than half of the features. Therefore, we conclude
that the amino acid compositions contribute more to the pre-
diction than the physiochemical features, and the hypothesis
is false. As for solvent accessibility, it has been known that
residues located in the surface of a protein usually function as
active sites interacting with other molecules and ligands. For
example, DNA-binding proteins prefer to bind with residues
with higher solvent accessible area [28]; in the mutants of
Hsc70 proteins, the reduction in solvent accessibility results
a higher hydrophobic free energy level [29]. Thus solvent
accessibility was widely used for drug design and fold recog-
nition [30,31]. The solvent-accessible surface contributes to
the stability of a ligand receptor complex [32], protein crystal
stability [33] and was used to model side chain conforma-

Table 5 Distribution of the first 18 mRMR features in the first 22
MaxRel features

Order Name Score
1 AA_composition_C 0.267
2 Solvent_composition_H 0.192
3 VanDerWaal_composition_N 0.145
4 AA_composition_L 0.138
5 VanDerWaal_composition_P 0.125
6 Polarity_composition_H 0.117
7 Hydrophobicity_composition_N 0.102
8 AA_composition_T 0.102
9 AA_composition_V 0.101
10 Hydrophobicity_composition_P 0.101
11 AA_composition_E 0.088
12 Polarity_composition_N 0.086
13 AA_composition_G 0.085
14 VanDerWaal_transition._ NH 0.084
15 AA_composition_A 0.081
16 AA_composition_S 0.079
17 VanDerWaal_distribution_N-0.25 0.074
18 Solvent_distribution_H-0.75 0.073
19 Solvent_distribution_H-0.0 0.072
20 AA_composition_W 0.071
21 Polarity_distribution_P-0.0 0.070
22 Solvent_transition_HE 0.069

The italicized ones are the mRMR features also appearing in the final
selected 37 features. The first 18 mRMR features mainly consist of
amino acid compositions, solvent accessibility and normalized Van Der
Waal volume with the number being 9, 4 and 3, respectively

@ Springer

tions [34]. And we also know that the solvent-accessible sur-
face is derived from the normalized Van Der Waals volume
[35]. Undoubtedly they are strongly related to each other, and
together they help to predict the protein structural classes.

Conclusions

By combining the NNA, mRMR and feature forward search-
ing strategy, we are able to investigate the role of physiochem-
ical properties in predicting the protein structural classes.
The results are summarized as followings. Physiochemical
features do provide extra prediction capacity to the origi-
nal amino acid compositions. However, the hypothesis that
physiochemical properties provide more prediction capacity
is proved to be false. Therefore, more researches should be
carried out to search more profound information derived from
amino acid sequences. Solvent accessibility and normalized
Van Der Waals volume contribute more to the prediction
of the protein structural classes than other physiochemical
features in the prediction. The combination of mRMR and
forward feature searching method provides a way to effec-
tively and efficiently develop the predicting models on the
large dataset with hundreds of or more features. A combi-
nation method shall be chosen as to achieve good balance
between computation speed and the successfulness in the fea-
ture selection. Finally, the predictor developed in this study
is available on: http://app3.biosino.org:8080/liwenjin/index.

Jsp
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