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Supporting Figures 
 

 

Fig. S1. Age-distributions of the subjects used in the study  

Each dot represents an individual sample. The x-axis shows individuals’ ages in years 

after birth. The colours represent: red – human prefrontal cortex [dorsolateral prefrontal 

cortex (DLPFC) or superior frontal gyrus (SFG)], blue – chimpanzee prefrontal cortex, 

green – rhesus macaque prefrontal cortex, purple – human caudate nucleus. (A) The 

distributions of ages of all primates used with the HG-U133Plus2.0 microarrays. (B) Age 

distributions of all primates used with the HuGene-1.0 ST microarrays. (C-D) Age-

distributions of age-matched sample sets, which were used in the analysis to ensure that 

sample size and age distribution differences between groups does not bias the results. (C) 

Human DLPFC samples numbered 1, 2, 3, 4, 5, 8, 13, 19, 20, 22, 23, 24, 35, 37 in Table 

S1 were chosen to match the chimpanzee DLPFC samples in age. (D) Human DLPFC 

samples numbered 7, 9, 13, 15, 23, 24, 26, 27, 31, 33, 34, 36, 38 in Table S1 were chosen 

to match the human caudate nucleus samples in age.  
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Fig. S2. Conservation of developmental patterns between mice and primates.  

(A) The first two principle components of the total expression variation analysis among 

M.musculus and M.spretus individuals, based on 8,362 expressed genes. The numbers 

represent each individuals’ birth age in days. The first and second components explain 

45% and 15% of the total variation, and are correlated with age (r=0.94, p<10-3) and 

species (r=0.87, p<10-3), respectively. The colours represent different species: orange – 

M.musculus and light blue – M.spretus. (B) Percent global expression change relative to 

the newborns. 100% change was designated as the difference between the youngest and 

oldest individuals in terms of the summary measure of global expression (see SI section 

“The influence of age, species identity and sex on expression”). Orange lines represent 

M.musculus and light blue M.spretus. (C) Conservation of expression changes during 

postnatal brain development among mammals. The y-axis shows mean normalized 

expression levels among 2,599 human-mouse orthologs in four different species at three 

developmental stages. The genes are grouped into 4 k-means clusters, using expression 

levels of the 3 human developmental groups. Red – humans, blue – chimpanzees, orange 

– Mus musculus, light blue – Mus spretus. For primates, these stages are: newborns (0-1 

years of age), adolescents (10-14 years) and young adults (25-50 years). For mice, these 

stages are: newborns (0 days), pups (14 days) and young adults (56 days).  
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Fig. S3. How the heterochrony test works.  

The x-axis represents log2 transformed conception ages in days, the y-axis, normalized 

and log2 transformed expression levels for a gene (UBE2B, ubiquitin-protein ligase B) 

chosen as an example from the dorsolateral prefrontal cortex dataset. Upper panel: 

Expression levels of the 14 humans (red triangles), the 14 chimpanzees (blue points). For 

this gene, the heterochrony test algorithm chooses an expression shift of magnitude 

+1.43, and an age-shift (C) of magnitude +0.82 (i.e. linear chimpanzee ages would be 

multiplied by 20.82=1.8 to match the human curve). The arrows show the directions in 

which the chimpanzee curve would be shifted to match the human curve. Lower panel: 

The fit between the human and chimpanzee curves, after applying the expression and age 

shifts on the chimpanzee curve, i.e. adding 1.43 to the chimpanzee expression levels and 

0.82 to chimpanzee log-transformed ages. The improvement in the fit is significant (F-

test p-value = 0.011). Hence this gene is classified as a gene with delayed expression in 

humans compared to the chimpanzees. 
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Fig. S4. Primate gene expression trees.  

Hierarchical clustering trees of 14 humans, 14 chimpanzees, and 9 rhesus macaques, 

based on expression profiles of 1,225 genes which are age-related and differentially 

expressed between humans and chimpanzees (Age+,sp+) (A), or 171 human-neotenic 

genes (B). Genes are identified in the dorsolateral prefrontal cortex dataset, using relaxed 

significance cutoffs (p<0.1) for all tests. Individuals are indicated by the initial letter of 

their species: H – human, C – chimpanzee, R – rhesus macaque. The individuals’ ages in 

years after birth is indicated after the dash. The trees were built based on Euclidean 

distances of normalized expression values per gene, and calculated using the “hclust” 

function in the R “stats” package.  
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Fig. S5. Simulations of different modes of heterochrony.  

The plots show simulated examples of three different modes of heterochrony, following 

the definitions in (29). In all plots, the red circles represent the reference species (e.g. 

human), which exhibits a delay in maturation in the form of either post-displacement, 

neoteny or hypermorphosis relative to the second species (e.g. chimpanzee), represented 

by black circles. The third plot on the upper panel is based on the same data as the 

previous one, except that age and expression level values are log transformed. The two 

plots in the lower panel represent two different simulated examples of hypermorphic 

development. Employing the heterochrony test and default criteria (using both the age-

shift and expression-shift models), all five examples would be classified as showing 

“neoteny” in the reference species relative to the second species. Employing the 

heterochrony test and using only the age-shift model and not the expression-shift model 

(“condition set 3”), the examples of hypermorphosis would be classified as “accelerated”. 

See text for description of criteria. 
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Supporting Tables 
 

Table S1. Sample characteristics. 
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1 Homo 
sapiens DLPFC 39 0.1 0 F 27 6.47 1.4 asphyxia - 

2 Homo 
sapiens DLPFC 54 0.1 0 M 17 6.63 1.5 SIDS - 

3 Homo 
sapiens DLPFC 56 0.2 0 M 11 6.86 n.a. congenital 

heart defect - 

4 Homo 
sapiens DLPFC 62 0.2 0 M 27 6.52 1.5 pneumonia - 

5 Homo 
sapiens DLPFC 89 0.2 0 M 24 6.65 1.2 positional 

asphyxia - 

6 Homo 
sapiens DLPFC 92 0.3 0 F 14 6.54 n.a. SIDS - 

7 Homo 
sapiens DLPFC 118 0.3 0 M 19 6.36 1.4 asphyxia - 

8 Homo 
sapiens DLPFC 139 0.4 0 M 9 6.54 1.5 SIDS - 

9 Homo 
sapiens DLPFC 141 0.4 0 M 5 6.81 1.6 asthma - 

10 Homo 
sapiens DLPFC 188 0.5 0 F 22 6.82 1.7 SIDS - 

11 Homo 
sapiens DLPFC 198 0.5 0 M 24 6.71 1.8 accident/ 

asphyxia - 

12 Homo 
sapiens DLPFC 301 0.8 0 M 18 6.65 0.8 hypothermia - 

13 Homo 
sapiens DLPFC 332 0.9 0 M 18 6.87 1.6 SUD - 

14 Homo 
sapiens DLPFC 801 2.2 0 M 27 6.64 1.2 asthma - 

15 Homo 
sapiens DLPFC 893 2.4 0 F 22 6.74 1.6 

no 
anatomical 

cause 
- 

16 Homo 
sapiens DLPFC 990 2.7 0 F 44 6.47 0.9 drowning - 

17 Homo 
sapiens DLPFC 1692 4.6 0 M 18 6.92 1.3 accident - 

18 Homo 
sapiens DLPFC 1773 4.9 0 M 19 6.74 n.a. drowning - 

19 Homo 
sapiens DLPFC 1969 5.4 0 M 17 6.74 1.7 drowning - 

20 Homo 
sapiens DLPFC 2920 8 0 M 5 6.76 1.6 cardiac 

arhythmia - 

21 Homo 
sapiens DLPFC 2920 8 0 F 20 6.78 0.9 asphyxia - 

22 Homo 
sapiens DLPFC 4213 11.5 0 F 12 6.44 1.9 asthma - 
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23 Homo 
sapiens DLPFC 4534 12.4 0 M 16 6.82 1.7 drowning - 

24 Homo 
sapiens DLPFC 4733 13 0 F 18 6.85 1.7 accident - 

25 Homo 
sapiens DLPFC 6090 16.7 0 F 16 6.81 1.6 multiple 

injuries - 

26 Homo 
sapiens DLPFC 6222 17 0 M 25 6.69 1.7 drowning - 

27 Homo 
sapiens DLPFC 6456 17.7 0 M 16 6.83 1.5 accident - 

28 Homo 
sapiens DLPFC 6505 17.8 0 M 12 6.8 1.5 accident/ 

asphyxia - 

29 Homo 
sapiens DLPFC 7350 20.1 0 M n.a. n.a. n.a. n.a. - 

30 Homo 
sapiens DLPFC 8006 21.9 0 M 13 6.96 1.6 MVA - 

31 Homo 
sapiens DLPFC 8364 22.9 0 M 4 6.84 1.7 ASCVD - 

32 Homo 
sapiens DLPFC 8623 23.6 0 F 14 6.57 1.4 asthma - 

33 Homo 
sapiens DLPFC 9098 24.9 0 F 7 6.92 1.9 MVA - 

34 Homo 
sapiens DLPFC 9262 25.4 0 F 16 6.73 1.8 accident - 

35 Homo 
sapiens DLPFC 13138 36 0 M 13 6.73 1.5 coronary 

artery dis - 

36 Homo 
sapiens DLPFC 14024 38.4 0 F 19 n.a. 1.2 n.a. - 

37 Homo 
sapiens DLPFC 15672 42.9 0 M 18 6.49 1.1 accident - 

38 Homo 
sapiens DLPFC 16855 46.2 0 M 18 6.75 1.5 accident - 

39 Homo 
sapiens DLPFC 17317 47.4 0 M 12 6.56 1.6 ASCVD - 

40 Pan 
troglodytes DLPFC 0 0 0 M n.a. n.a. 2.2 n.a. Western 

41 Pan 
troglodytes DLPFC 1 0 0 F n.a. n.a. 1.6 n.a. Central/ 

Eastern 

42 Pan 
troglodytes DLPFC 8 0 0 M n.a. n.a. 1.5 n.a. Western 

43 Pan 
troglodytes DLPFC 40 0.1 0 M n.a. n.a. 1.4 n.a. Western 

44 Pan 
troglodytes DLPFC 45 0.1 0 F n.a. n.a. 1.8 n.a. Western 

45 Pan 
troglodytes DLPFC 186 0.5 ±0.2 M n.a. n.a. 1.4 n.a. Western 

46 Pan 
troglodytes DLPFC 525 1.4 0 F n.a. n.a. 1.6 n.a. n.a. 

47 Pan 
troglodytes DLPFC 2313 6.3 0 F n.a. n.a. 1.4 n.a. n.a. 

48 Pan 
troglodytes DLPFC 2447 6.7 0 M n.a. n.a. 2.4 n.a. Western 

49 Pan 
troglodytes DLPFC 4361 11.9 0 M n.a. n.a. 1.6 n.a. Western 

50 Pan 
troglodytes DLPFC 4415 12.1 0 M n.a. n.a. 3 n.a. Western 

51 Pan 
troglodytes DLPFC 4480 12.3 0 M n.a. n.a. 1.7 n.a. Western 
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52 Pan 
troglodytes DLPFC 12784 35 ±5 M n.a. n.a. 1.5 n.a. n.a. 

53 Pan 
troglodytes DLPFC 16131 44.2 0 F n.a. n.a. 1.6 n.a. Western 

54 Macaca 
mulatta DLPFC 467 1.3 0 F ~ 1 n.a. 1.2 n.a. - 

55 Macaca 
mulatta DLPFC 1269 3.5 0 M ~ 1 n.a. 1.2 n.a. - 

56 Macaca 
mulatta DLPFC 1760 4.8 0 M ~ 1 n.a. 1.4 n.a. - 

57 Macaca 
mulatta DLPFC 2814 7.7 ±0.5 M ~ 1 n.a. 1.4 n.a. - 

58 Macaca 
mulatta DLPFC 2816 7.7 ±0.5 M ~ 1 n.a. 1.4 n.a. - 

59 Macaca 
mulatta DLPFC 4894 13.4 0 F ~ 1 n.a. 1.1 n.a. - 

60 Macaca 
mulatta DLPFC 6230 17.1 ±1 F ~ 1 n.a. 1.2 n.a. - 

61 Macaca 
mulatta DLPFC 6230 17.1 ±1 F ~ 1 n.a. 1.3 n.a. - 

62 Macaca 
mulatta DLPFC 6524 17.9 0 F ~ 1 n.a. 1.2 n.a. - 

63 Homo 
sapiens 

Caudate 
nucleus 128 0.4 0 M 27 6.66 2.1 n.a. - 

64 Homo 
sapiens 

Caudate 
nucleus 141 0.4 0 M 5 6.81 2 asthma - 

65 Homo 
sapiens 

Caudate 
nucleus 332 0.9 0 M 18 6.87 2 sud - 

66 Homo 
sapiens 

Caudate 
nucleus 893 2.4 0 F 22 6.74 2 

no 
anatomical 

cause 
- 

67 Homo 
sapiens 

Caudate 
nucleus 4534 12.4 0 M 16 6.82 2 drowning - 

68 Homo 
sapiens 

Caudate 
nucleus 4738 13 0 F 18 6.85 2 n.a. - 

69 Homo 
sapiens 

Caudate 
nucleus 6222 17 0 M 25 6.69 2 drowning - 

70 Homo 
sapiens 

Caudate 
nucleus 6384 17.5 0 M 16 6.67 2.1 n.a. - 

71 Homo 
sapiens 

Caudate 
nucleus 8364 22.9 0 M 4 6.84 2 n.a. - 

72 Homo 
sapiens 

Caudate 
nucleus 9098 24.9 0 M 7 6.92 2 MVA - 

73 Homo 
sapiens 

Caudate 
nucleus 9253 25.4 0 F 16 6.73 2.1 n.a. - 

74 Homo 
sapiens 

Caudate 
nucleus 14100 38.6 0 M 8 6.37 2.1 n.a. - 

75 Homo 
sapiens 

Caudate 
nucleus 16855 46.2 0 M 18 6.75 2 accident - 

76 Mus 
musculus Whole brain 0 0 0 M ~3 

min. n.a. 1.7 - - 

77 Mus 
musculus Whole brain 0 0 0 M ~3 

min. n.a. 1.7 - - 

78 Mus 
musculus Whole brain 0 0 0 M ~3 

min. n.a. 1.9 - - 

79 Mus 
musculus Whole brain 14 2 0 M ~3 

min. n.a. 1.8 - - 

80 Mus 
musculus Whole brain 14 2 0 M ~3 

min. n.a. 1.6 - - 
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81 Mus 
musculus Whole brain 14 2 0 M ~3 

min. n.a. 1.7 - - 

82 Mus 
musculus Whole brain 56 8 0 M ~3 

min. n.a. 1.4 - - 

83 Mus 
musculus Whole brain 56 8 0 M ~3 

min. n.a. 1.3 - - 

84 Mus 
musculus Whole brain 56 8 0 M ~3 

min. n.a. 1.4 - - 

85 Mus spretus Whole brain 0 0 0 M ~3 
min. n.a. 1.6 - - 

86 Mus spretus Whole brain 0 0 0 M ~3 
min. n.a. 1.6 - - 

87 Mus spretus Whole brain 0 0 0 M ~3 
min. n.a. 1.6 - - 

88 Mus spretus Whole brain 14 2 0 M ~3 
min. n.a. 1.6 - - 

89 Mus spretus Whole brain 14 2 0 M ~3 
min. n.a. 1.4 - - 

90 Mus spretus Whole brain 14 2 0 M ~3 
min. n.a. 1.4 - - 

91 Mus spretus Whole brain 56 8 0 M ~3 
min. n.a. 1.6 - - 

92 Mus spretus Whole brain 56 8 0 M ~3 
min. n.a. 1.3 - - 

93 Mus spretus Whole brain 56 8 0 M ~3 
min. n.a. 1.3 - - 

94 Homo 
sapiens SFG 1 0.0 0 M n.a. n.a. 1.4 n.a. - 

95 Homo 
sapiens SFG 4 0.0 0 M n.a. n.a. 1.5 n.a. - 

96 Homo 
sapiens SFG 34 0.1 0 M n.a. n.a. n.a. n.a. - 

97 Homo 
sapiens SFG 204 0.6 0 M n.a. n.a. 1.5 n.a. - 

98 Homo 
sapiens SFG 2922 8.0 0 M n.a. n.a. 1.2 n.a. - 

99 Homo 
sapiens SFG 5105 14.0 0 M n.a. n.a. n.a. n.a. - 

100 Homo 
sapiens SFG 9277 25.4 0 M n.a. n.a. 1.4 n.a. - 

101 Homo 
sapiens SFG 19457 53.3 0 M n.a. n.a. 1.5 n.a. - 

102 Homo 
sapiens SFG 24090 66.0 ±0.5 M n.a. n.a. 1.6 n.a. - 

103 Pan 
troglodytes SFG 1 0.0 0 F n.a. n.a. 2.1 n.a. Central/ 

Eastern 

104 Pan 
troglodytes SFG 8 0.0 0 M n.a. n.a. 1.5 n.a. Western 

105 Pan 
troglodytes SFG 40 0.1 0 M n.a. n.a. 1.2 n.a. Western 

106 Pan 
troglodytes SFG 525 1.4 0 F n.a. n.a. 1.2 n.a. n.a. 

107 Pan 
troglodytes SFG 2313 6.3 0 F n.a. n.a. 1.2 n.a. n.a. 

108 Pan 
troglodytes SFG 4415 12.1 0 M n.a. n.a. 2 n.a. Western 

109 Pan 
troglodytes SFG 4480 12.3 0 M n.a. n.a. 1.6 n.a. Western 
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110 Pan 
troglodytes SFG 12784 35 ±5 M n.a. n.a. 1.6 n.a. n.a. 

111 Pan 
troglodytes SFG 16131 44.2 0 F n.a. n.a. 1.5 n.a. Western 

112 Macaca 
mulatta SFG 16 0.0 0 M ~ 1 n.a. 1.2 n.a. - 

113 Macaca 
mulatta SFG 20 0.1 0 M ~ 1 n.a. 1.2 n.a. - 

114 Macaca 
mulatta SFG 153 0.4 0 M ~ 1 n.a. 1.4 n.a. - 

115 Macaca 
mulatta SFG 310 0.8 0 M ~ 1 n.a. 1.4 n.a. - 

116 Macaca 
mulatta SFG 3389 9.3 0 M ~ 1 n.a. 1.4 n.a. - 

117 Macaca 
mulatta SFG 7391 20.2 0 M ~ 1 n.a. 1.1 n.a. - 

118 Macaca 
mulatta SFG 8104 22.2 0 M ~ 1 n.a. 1.2 n.a. - 

119 Macaca 
mulatta SFG 9518 26.1 0 M ~ 1 n.a. 1.3 n.a. - 

120 Macaca 
mulatta SFG 10220 28.0 ±1 F ~ 1 n.a. 1. n.a. - 

 
Abbreviations: n.a.: Data not available; DLPFC: Dorsolateral prefrontal cortex; SFG: Superior frontal 
gyrus; SIDS: sudden infant death; SUD: sudden death; MVA: motor vehicle accident; ASCVD: 
arteriosclerotic cardiovascular disease. 
a Age from birth, in years for the primate and in weeks for the mouse species. 
b Possible error in age estimates in years for chimpanzee and rhesus individuals for which the birth date 
was not exactly know. 
c Post-mortem interval in hours. 
d 28S/18S rRNA ratio, indicating RNA quality. 
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Table S2. Expression variance explained by age, species identity and sex. 

The table shows the proportion of total expression variation (R2) explained by age, 
species identity, or sex in three brain datasets. SI section“The influence of age, species 
identity and sex on expression - a general view” describes how the proportion is 
calculated. For the effects of these factors tested gene by gene, see Table S12, Table 15, 
and Table S16. 
 

    
%R2

f
 a p-value b %FDR c 

Age 28.73 <0.001 19 

Species 16.77 <0.001 10 

Sex 1.18 0.90 149 

Human-chimpanzee 
dorsolateral PFC  
39 + 14 

Sex-correctedd 1.82 0.54 101 

 

Age 33.60 <0.001 52 Human-chimpanzee 
superior frontal gyrus 
9 + 9 Species 16.22 <0.001 33 

 

Age 53.32 <0.001 19 M.musculus - 
M.spretus 
9 + 9 Species 15.14 0.02 33 

 

a Mean percent of variance explained by each factor among all expressed genes. 
b p-value for R2

f being larger than random based on 1,000 permutations. 
c Percent false discovery rate based on permutations; see text.  
d The effect of sex after factoring out the effects of age and species; see SI section“The influence of age, 
species identity and sex on expression” for details. 
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Table S3. Biological processes overrepresented among age-related genes. 

The Gene Ontology (GO) biological process groups that are overrepresented among age-
related genes with GO annotation (n=4,349) compared to non-age-related genes 
(n=1,767). Age-related genes were identified among the 39 humans of the dorsolateral 
prefrontal cortex dataset, at false discovery rate 10%. 
 

  

Gene Ontology group Age-
related Other p-value a 

GO:0007154 Cell communication 1362 456 9.5E-06 
GO:0032501 Multicellular organismal process 1112 367 3.5E-05 
GO:0048666 Neuron development 99 15 5.1E-05 
GO:0031175 Neurite development 90 13 6.6E-05 
GO:0007267 Cell-cell signaling 215 50 9.0E-05 
GO:0050877 Neurological system process 262 66 1.3E-04 

GO:0000904 
Cellular morphogenesis during 
differentiation 79 11 1.3E-04 

GO:0048468 Cell development 218 53 2.2E-04 

GO:0048667 
Neuron morphogenesis during 
differentiation 75 11 3.1E-04 

GO:0048812 Neurite morphogenesis 75 11 3.1E-04 
GO:0030182 Neuron differentiation 122 25 5.4E-04 
GO:0019226 Transmission of nerve impulse 156 36 7.3E-04 
GO:0007165 Signal transduction 1220 426 8.5E-04 
GO:0007409 Axonogenesis 70 11 9.0E-04 
GO:0022008 Neurogenesis 153 36 1.1E-03 
GO:0007399 Nervous system development 345 101 1.2E-03 
GO:0007268 Synaptic transmission 139 32 1.4E-03 
GO:0048856 Anatomical structure development 736 245 1.6E-03 
GO:0048699 Generation of neurons 140 33 1.9E-03 
GO:0048731 System development 644 213 2.5E-03 
GO:0003008 System process 317 95 3.5E-03 
GO:0007155 Cell adhesion 294 87 3.6E-03 
GO:0022610 Biological adhesion 294 87 3.6E-03 
GO:0000902 Cell morphogenesis 158 41 4.5E-03 
GO:0032989 Cellular structure morphogenesis 158 41 4.5E-03 
GO:0007275 Multicellular organismal development 813 282 6.0E-03 
GO:0030030 Cell projection organization and biogenesis 122 31 9.2E-03 
GO:0032990 Cell part morphogenesis 122 31 9.2E-03 
GO:0048858 Cell projection morphogenesis 122 31 9.2E-03 

GO:0007166 
Cell surface receptor linked signal 
transduction 512 171 9.7E-03 

 

a Fisher’s exact test p-value (one-sided) for a higher number of human-neotenic genes in a GO group 
compared to genes in the other phylo-ontogenetic categories. 
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Table S4. Correlation between age-related expression changes in primates and mice. 

The table shows the median correlation coefficients among 2,599 age+ genes (lower 
triangle) and among 388 age- genes (upper triangle) between the indicated species. For 
each human-mouse ortholog, we calculated the Pearson correlation coefficient between 
each pair of species using mean expression levels in 3 age groups: newborns, 
adolescents/pups, and adults (see SI section “Conservation of age-related changes in 
mice and primates” and Fig. S2).  
 
 

  Human Chimpanzee M.musculus M.spretus 

Human - 0.41 -0.02 0.07 
Chimpanzee 0.90 - 0.10 0.23 
M.musculus 0.83 0.76 - 0.53 
M.spretus 0.83 0.79 0.98 - 

 

 

Table S5. Comparison of prefrontal cortex with caudate nucleus in developmental 
timing.  
The table shows the number of genes classified in different categories and the excess of 
genes showing delayed dorsolateral prefrontal cortex development (cortex-neotenic 
genes) with respect to the caudate nucleus. 
 

  

39 cortex vs 
13 caudate 
nucleus a 

13 cortex vs 
13 caudate 
nucleus b 

Age-related and differentially 
expressed (FDR=10%) 5484 2979 

Cortex-neotenic c 2494 1310 

Cortex-accelerated c 1356 951 

% Cortex-neotenic 64.8 57.9 

p neotenyd <10-16 <10-16 
 

a Analyses conducted using all 39 human dorsolateral prefrontal cortex samples.  
b Analyses conducted using only 13 human dorsolateral prefrontal cortex samples with ages matched to the 
13 caudate nucleus samples (Fig. S1D). 
c The number of genes that are age-related and differentially expressed between regions, and are also 
classified as cortex-neotenic or cortex-accelerated relative to the caudate nucleus. 
d The one-sided binomial test p-value for the frequency of cortex-neotenic genes among all heterochronic 
genes >50%. 
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Table S6. Phylo-ontogenetic classification under different assumptions and criteria.  
(continued on next pages) 
 
The table shows the number of genes classified in phylo-ontogenetic categories and the 
excess of human-neotenic genes under different assumptions or criteria. In all cases we 
have used the dorsolateral prefrontal cortex dataset and compared 14 humans with 14 
chimpanzees (unless otherwise indicated). Gene sets identified under different criteria 
(here and in Table 1) overlap with the main result by at least 40%. 
 

  

Assumptions/ 
Criteria/ 
Subset 

M
ai

n 
re

su
lt 

(d
or

so
la

te
ra

l 
pf

c)
 

Ex
pr

es
se

d 
in

 
10

0%
 a

 

M
ea

n 
> 

50
%

 

b  

N
o 

R
N

A
/p

H
 

ef
fe

ct
 c

 

O
nl

y 
m

al
es

 d
 

  
Number of expressed 
genes 3075 2073 2237 1159 3075 

Human-neotenic  114 85 93 22 139 

Human-accelerated 65 48 54 12 88 

Chimpanzee-accelerated 46 37 39 9 77 

Chimpanzee-neotenic 74 57 57 12 106 

p neotenym 2.E-04 8.E-04 8.E-04 6.E-02 4.E-04 

FDR = 10% 
for age and 
species 
effects; 
p<0.05 for 
heterochrony 
and lineage 
(one-sided) 
tests p human specificity n 4.E-08 8.E-06 1.E-06 1.E-02 1.E-05 

        
Human-neotenic  171 132 138 35 226 

Human-accelerated 100 66 77 27 135 

Chimpanzee-accelerated 81 62 65 18 143 

Chimpanzee-neotenic 121 95 98 31 187 

p neotenym 1.E-05 2.E-06 2.E-05 2.E-01 1.E-06 

Relaxed 
cutoffs: 
p < 0.10 in 
all four tests 

p human specificity n 7.E-09 3.E-07 2.E-07 1.E-02 9.E-06 

 
a Using genes expressed in all 39 humans and 14 chimpanzees (instead of genes expressed in >1/3 of 
individuals in either species, as in the main analysis). 
b Using genes with mean log expression level above the mean expression of 50% of all genes on the array 
among all humans and chimpanzees (instead of using MAS5 detection cutoffs, as in the main analysis). 
c Using genes which do not show pH or RNA quality effects, or any interactions of these factors with 
species or age in their expression profiles (at p<0.05) (see Table S12). 
d Using only males: 26 humans vs. 9 chimpanzees. 
m The one-sided binomial test p-value for neoteny: More than 50% of genes that are assigned to the human 
lineage show delayed development in human relative to chimpanzee. 
n The one-sided binomial test p-value for human-specificity: More than 50% of genes that show delayed 
development in human vs. chimpanzee are assigned to the human lineage. 
Note: Repeating the analysis by randomly choosing 8 probes within each probeset with replacement, the p-
values for both human-specificity and neoteny were significant at p<0.05 in 91/100 bootstrap trials (97/100 
using relaxed cutoffs). 
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Table S6 continued. 
 

  

Assumptions/ 
Criteria/ 
Subset 

M
ai

n 
re

su
lt 

(d
or

so
la

te
ra

l 
pf

c)
 

Li
ne

ar
 a

ge
 sc

al
e 

e  

A
lte

rn
at

iv
e 

lin
ea

ge
 te

st
 f  

C
hi

m
ps

  a
s 

re
fe

re
nc

e 
g  

N
eo

te
ny

 
co

nd
iti

on
 2

 h
 

N
eo

te
ny

 
co

nd
iti

on
 3

 i  

  
Number of expressed 
genes 3075 3075 3075 3075 3075 3075 

Human-neotenic  114 66 86 126 51 102 

Human-accelerated 65 19 48 73 0 84 

Chimpanzee-accelerated 46 21 33 59 9 39 

Chimpanzee-neotenic 74 42 44 78 1 82 

p neotenym 2.E-04 2.E-07 7.E-04 1.E-04 4.E-16 1.E-01 

FDR = 10% 
for age and 
species 
effects; 
p<0.05 for 
heterochrony 
and lineage 
(one-sided) 
tests p human specificity n 4.E-08 7.E-07 6.E-07 5.E-07 2.E-08 6.E-08 

         
Human-neotenic  171 133 120 198 186 152 

Human-accelerated 100 67 74 119 6 123 

Chimpanzee-accelerated 81 58 55 112 42 67 

Chimpanzee-neotenic 121 114 65 138 9 136 

p neotenym 1.E-05 2.E-06 6.E-04 5.E-06 1.E-47 5.E-02 

Relaxed 
cutoffs: 
p < 0.10 in 
all four tests 

p human specificity n 7.E-09 3.E-08 5.E-07 6.E-07 4.E-23 5.E-09 

 
e Using the linear age scale rather than log transformation throughout the analyses. 
f Using a multiple regression-based test for lineage assignment: Genes differently expressed between 
human and rhesus, but not rhesus and human, are considered human-specific, and vice versa (see SI text). 
g Using chimpanzee as the reference species, instead of human. 
h Using more stringent conditions to define neoteny: Requiring that the age-shift model (model A) is 
always significantly better than the expression-shift model (see Supporting Note 2). 
i Using only the age-shift model (model A) of the heterochrony test, ignoring a possible expression shift 
(see SI text). 
m The one-sided binomial test p-value for neoteny: More than 50% of genes that are assigned to the human 
lineage show delayed development in human relative to chimpanzee. 
n The one-sided binomial test p-value for human-specificity: More than 50% of genes that show delayed 
development in human vs. chimpanzee are assigned to the human lineage. 
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Table S6 continued. 
 

  

Assumptions/ 
Criteria/ 
Subset 

M
ai

n 
re

su
lt 

(d
or

so
la

te
ra

l 
pf

c)
 

U
sin

g 
al

l 
hu

m
an

s  j  

G
es

ta
tio

n 
tim

e 
di

ff
 =

 2
0 

da
ys

 k  

G
es

ta
tio

n 
tim

e 
di

ff
 =

 2
0 

da
ys

 l  

  
Number of expressed 
genes 3075 3075 3075 3075 

Human-neotenic  114 154 121 131 

Human-accelerated 65 88 59 54 

Chimpanzee-accelerated 46 86 59 63 

Chimpanzee-neotenic 74 118 78 72 

p neotenym 2.E-04 1.E-05 2.E-06 7.E-09 

FDR = 10% 
for age and 
species 
effects; 
p<0.05 for 
heterochrony 
and lineage 
(one-sided) 
tests p human specificity n 4.E-08 7.E-06 2.E-06 6.E-07 

       

Human-neotenic  171 255 208 232 

Human-accelerated 100 138 107 97 

Chimpanzee-accelerated 81 148 97 110 

Chimpanzee-neotenic 121 193 129 122 

p neotenym 1.E-05 2.E-09 7.E-09 3.E-14 

Relaxed 
cutoffs: 
p < 0.10 in 
all four tests 

p human specificity n 7.E-09 5.E-08 1.E-10 2.E-11 

 
j Using all 39 humans in the age, species, lineage and heterochrony tests (instead of 14 age-matched 
humans). 
k Assuming a 20 day shorter gestation time in chimpanzees than humans (instead using 280 days for both 
species, as in the main analysis). 
l Assuming a 51 day shorter gestation time in chimpanzees than humans (instead using 280 days for both 
species, as in the main analysis). 
m The one-sided binomial test p-value for neoteny: More than 50% of genes that are assigned to the human 
lineage show delayed development in human relative to chimpanzee. 
n The one-sided binomial test p-value for human-specificity: More than 50% of genes that show delayed 
development in human vs. chimpanzee are assigned to the human lineage. 



 19 

 

Table S7. The false negative and false positive rates of phylo-ontogenetic 
classification.  
 
In order to estimate the false positive rates of the tests for age, species, lineage and 
heterochrony, we compare 14 humans to 14 other humans in the dorsolateral prefrontal 
cortex dataset. In order to estimate the false negative rates, we simulate slower or faster 
developmental rates in the reference group relative to the other, by multiplying 
individuals’ ages by 1/2 or 2. For the tests for age and species effects, we use the same p-
value cutoffs as in the original 14 human subset. The total number of age-related genes, 
after applying the human-chimp-rhesus mask, is 1,527 (at FDR=10%) and 1,979 (at 
p<0.10). We estimate the false positive rate as ~10%, and the false negative rate ~75% 
(~30% and ~65% using relaxed significance cutoffs, respectively). 
 

  

Groups compared 

14 
humans 

vs. 14 
chimps 

14 
humans 

vs. 14 
humans 

I a 

14 
humans 

vs. 14 
humans

II a 

14 
humans 

vs. 14 
humans 

14 
humans 

vs. 14 
humans 

  Simulated difference in 
developmental rate - 0 0 0.5X 2X 

Human-neotenic 114 13 8 204 1 

Human-accelerated 65 1 7 0 99 

Chimpanzee-accelerated 46 6 0 208 5 

Chimpanzee-neotenic 74 10 8 2 399 

p neoteny b 2.E-04 9.E-04 5.E-01 4.E-62 1.E+00 

FDR = 10% 
for age and 
species 
effects; 
p<0.05 for 
heterochrony 
and lineage 
(one-sided) 
tests p human specificity c 4.E-08 8.E-02 4.E-03 6.E-01 1.E+00 

        
Human-neotenic 171 56 33 339 5 

Human-accelerated 100 15 29 0 204 

Chimpanzee-accelerated 81 40 7 361 11 

Chimpanzee-neotenic 121 30 40 2 595 

p neoteny b 1.E-05 5.E-07 4.E-01 9.E-103 1.E+00 

Relaxed 
cutoffs: 
p < 0.10 in 
all four tests 

p human specificity c 7.E-09 6.E-02 2.E-05 8.E-01 1.E+00 

 
a The same test conducted on the same two sets of 14 humans, but switching the reference group in the 
heterochrony test. 
b The binomial test p-value for neoteny: More than 50% of genes that are assigned to the human lineage 
show delayed development in human relative to chimpanzee (or reference group). 
c The binomial test p-value for human-specificity: More than 50% of genes that show delayed development 
in human vs. chimpanzee (or reference group) are assigned to the human lineage. 
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Table S8. Correspondence between datasets in age, species, lineage, and 
heterochrony tests.  
 
We compare different datasets in terms of how many genes are consistently identified in 
the same gene sets. The comparisons are: (1) the dorsolateral prefrontal cortex dataset 
versus the superior frontal gyrus dataset, (2) humans vs chimpanzees, (3) humans vs 
mice, (4) the dorsolateral prefrontal cortex dataset vs a previously published human-
chimpanzee dataset (1). The gene sets are: age-related or not (Age+/Age-); differentially 
expressed between species or not (Sp+/Sp-); assigned to the human or to the chimpanzee 
lineage (Human/Chimp specific); showing delayed or accelerated development in human 
relative to chimpanzee (Neotenic/Accelerated); assigned to the human-neotenic category 
or one of the other three phylo-ontogenetic categories (Human-neotenic/Other).  
 

  

Dataset 1  Dorsolateral PFC a Human 

c 
Human 

c 

Dorso-
lateral 
PFC f 

  

Dataset 2 Superior frontal gyrus  b  Chimpd Mousee PFC - 2 

g 

  

Gene set 1 h Age+ Sp+ Age+ 
& Sp+ 

Human 
specific 

Neo-
tenic 

Human 
neo-
tenic 

Age+ Age+ Sp+ 

  Gene set 2 h Age- Sp- Age+ 
& Sp+ 

Chimp 
specific 

Acceler
ated Other Age- Age- Sp- 

GS1 & GS1 640 442 112 16 38 6 1087 829 1216 

GS1 & GS2 180 360 102 5 13 2 440 184 1104 

GS2 & GS1 798 881 161 7 2 1 470 700 1207 

GS2 & GS2 1245 1180 265 12 8 10 1078 285 3436 

Odd's ratio 5.5 1.6 1.8 5.2 11.1 22.9 5.7 1.8 3.1 

FDR = 10% 
for age and 
species 
effects; 
p<0.05 for 
heterochrony 
and lineage 
(one-sided) 
tests 

p overlap i 8.E-83 2.E-09 3.E-04 1.E-02 2.E-03 6.E-03 1.E-116 8.E-09 1.E-103 

             

GS1 & GS1 1296 1021 464 92 97 29 1539 1057 1635 

GS1 & GS2 384 545 284 29 41 15 440 242 1275 

GS2 & GS1 565 742 304 44 8 7 515 532 1328 

GS2 & GS2 618 555 244 61 35 40 581 167 2725 

Odd's ratio 3.7 1.4 1.3 4.4 10.2 10.7 3.9 1.4 2.6 

Relaxed 
cutoffs 
p < 0.10 in 
all four tests 

p overlap i 3.E-59 7.E-06 1.E-02 1.E-07 2.E-09 6.E-07 2.E-66 3.E-03 6.E-85 

 
a The dorsolateral PFC dataset with 14 humans and 14 chimps, and using the human-chimp-rhesus mask. 
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b The superior frontal gyrus dataset with 9 humans and 9 chimps, and using the human-chimp-rhesus mask. 
c The dorsolateral PFC dataset with 14 humans, and using the human-chimp-rhesus mask.  
d The dorsolateral PFC dataset with 14 chimps, and using the human-chimp-rhesus mask.  
e 9 Mus musculus individuals in the mouse datasets, using the musculus-spretus mask.  
f The dorsolateral PFC dataset with 6 human and 5 chimps adults, and using the human-chimp mask. The 
overlap is similar (odd’s ratio=2.9) when we use all 39 humans and 14 chimps. 
g The dorsolateral PFC dataset from (1), containing 6 humans and 5 chimps, and using the human-chimp 
mask. 
h The gene sets as indicated in the table description. For example, in the first column, the two gene sets are 
age-related and not age-related genes. GS1 & GS1 in the first column indicates the number of genes that 
are age-related in both the DLPFC and SFG datasets; GS1 & GS2 indicates genes that are classified as age-
related in the DLPFC dataset, but not age-related in the SFG dataset; GS2 & GS1 indicates genes that are 
classified as not age-related in the DLPFC dataset, but age-related in the SFG dataset. 
i The Fisher’s exact test p-value (one-sided) for a larger than randomly expected overlap  (odd’s ratio > 1) 
between gene sets identified in the two datasets.  
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Table S9. Overlap between human-neotenic genes and grey- and white-matter-
specific genes. 
We compare human-neotenic genes with genes in the three other phylo-genetic categories 
with respect to the overlap with grey- or white-matter specific genes (n=1,155 and n=578, 
respectively), compared to all 9,892 genes expressed in a previously published grey/white 
matter experiment (2). 
 

  Gene sets a 
Dorsolateral 

PFC b 
Superior 

Frontal Gyrus c 

Grey & human-neotenic 21 38 

Grey & other cat. 25 20 

Non-grey & human-neotenic 94 151 

Non-grey & other cat. 137 137 

Odd's ratio d 1.2 1.7 

FDR = 10% for age 
and species effects; 
p<0.05 for 
heterochrony and 
lineage (one-sided) 
tests 

p overlap d 3.E-01 5.E-02 
      

Grey & human-neotenic 36 89 

Grey & other cat. 39 51 

Non-grey & human-neotenic 139 427 

Non-grey & other cat. 230 486 

Odd's ratio d 1.5 2.0 

Relaxed cutoffs 
p < 0.10 in all four 
tests 

p overlap d 6.E-02 1.E-04 

 
White & human-neotenic 4 9 

White & other cat. 9 8 

Non-white & human-neotenic 94 151 

Non- white & other cat. 137 137 

Odd's ratio d 0.6 1.0 

FDR = 10% for age 
and species effects; 
p<0.05 for 
heterochrony and 
lineage (one-sided) 
tests 

p overlap d 8.E-01 6.E-01 
      

White & human-neotenic 5 11 

White & other cat. 17 11 

Non-white & human-neotenic 139 171 

Non- white & other cat. 230 163 

Odd's ratio d 0.5 1.0 

Relaxed cutoffs 
p < 0.10 in all four 
tests 

p overlap d 1.E+00 6.E-01 
 

a Grey: grey-matter specific genes. Non-grey: all other genes. Other cat.: The 3 phylo-ontogenetic except 
human-neotenic genes. 
b The dorsolateral PFC dataset with 14 humans and 14 chimps, and using the human-chimp-rhesus mask. 
c The superior frontal gyrus dataset with 9 humans and 9 chimps, and using the human-chimp-rhesus mask. 
d The odd’s ratio for the overlap between grey- or white-matter specific genes and human-neotenic genes, 
and the Fisher’s exact test p-value (two-sided) for a non-random overlap  (odd’s ratio ≠ 1) between gene 
sets identified in the two datasets.  
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Table S10. Biological processes overrepresented among human-neotenic genes in the 

dorsolateral PFC. 

The Gene Ontology (GO) biological process groups that are overrepresented among 
human-neotenic genes (n=141) compared to genes in the other phylo-ontogenetic 
categories (n=250). We use relaxed significance cutoffs to define phylo-ontogenetic gene 
sets (at p<0.1) for all four tests. The significance for overall enrichment in biological 
process categories is only p=0.24 – therefore the results should be treated with caution. 
The GO groups shared with the superior frontal gyrus dataset are in bold. 
 

  
Gene Ontology group Human-

neotenic Other 
p-

value 

a 

GO:0032502 Developmental process 53 59 0.003 
GO:0007275 Multicellular organismal development 38 40 0.007 
GO:0016032 Viral reproduction 6 1 0.01 
GO:0015674 Di-, tri-valent inorganic cation transport 7 2 0.013 
GO:0007010 Cytoskeleton organization and biogenesis 12 7 0.013 
GO:0000003 Reproduction 11 6 0.014 
GO:0001666 Response to hypoxia 4 0 0.016 
GO:0019058 Viral infectious cycle 4 0 0.016 
GO:0051179 Localization 47 58 0.021 
GO:0022415 Viral reproductive process 5 1 0.025 
GO:0006810 Transport 42 51 0.025 
GO:0009888 Tissue development 9 5 0.027 
GO:0006816 Calcium ion transport 6 2 0.028 
GO:0006928 Cell motility 6 2 0.028 
GO:0007517 Muscle development 6 2 0.028 
GO:0008632 Apoptotic program 6 2 0.028 
GO:0051674 Localization of cell 6 2 0.028 
GO:0022414 Reproductive process 7 3 0.029 
GO:0030001 Metal ion transport 12 9 0.035 
GO:0051234 Establishment of localization 42 53 0.039 
GO:0000041 Transition metal ion transport 3 0 0.046 
GO:0007346 Regulation of mitotic cell cycle 3 0 0.046 
GO:0007601 Visual perception 3 0 0.046 
GO:0008633 Activation of pro-apoptotic gene products 3 0 0.046 
GO:0019748 Secondary metabolic process 3 0 0.046 
GO:0050953 Sensory perception of light stimulus 3 0 0.046 
GO:0050877 Neurological system process 13 11 0.048 
GO:0032501 Multicellular organismal process 45 59 0.048 

 
a Fisher’s exact test p-value (one-sided) for a higher number of human-neotenic genes in a GO group 
compared to genes in the other phylo-ontogenetic categories.  
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Table S11. Biological processes overrepresented among human-neotenic genes in the 

superior frontal gyrus. 

The Gene Ontology (GO) biological process groups that are overrepresented among 
human-neotenic genes (n=516) compared to genes in the other phylo-ontogenetic 
categories (n=560). We use relaxed significance cutoffs to define phylo-ontogenetic gene 
sets (at p<0.1) for all four tests. The significance for overall enrichment in biological 
process categories is only p=0.31 – therefore the results should be treated with caution. 
The GO groups shared with the dorsolateral prefrontal cortex dataset are in bold. 
 

  
Gene Ontology group Human-

neotenic Other 
p-

value 
a 

GO:0000165 MAPKKK cascade 13 2 0.002 
GO:0016485 Protein processing 8 0 0.003 
GO:0008632 Apoptotic program 10 1 0.004 
GO:0006350 Transcription 115 94 0.014 
GO:0008361 Regulation of cell size 8 1 0.014 
GO:0016049 Cell growth 8 1 0.014 
GO:0043284 Biopolymer biosynthetic process 146 125 0.014 
GO:0045449 Regulation of transcription 108 90 0.024 
GO:0009880 Embryonic pattern specification 5 0 0.025 
GO:0016540 Protein autoprocessing 5 0 0.025 
GO:0046777 Protein amino acid autophosphorylation 5 0 0.025 
GO:0009987 Cellular process 468 486 0.027 
GO:0006355 Regulation of transcription, DNA-dependent 103 86 0.029 
GO:0051252 Regulation of RNA metabolic process 104 87 0.029 
GO:0032774 RNA biosynthetic process 107 90 0.029 
GO:0008284 Positive regulation of cell proliferation 13 5 0.032 
GO:0006351 Transcription, DNA-dependent 106 90 0.034 

GO:0019219 
Regulation of nucleobase, nucleoside, nucleotide and nucleic acid 
metabolic process 111 95 0.035 

GO:0010558 Negative regulation of macromolecule biosynthetic process 18 9 0.037 
GO:0048519 Negative regulation of biological process 59 45 0.037 
GO:0050789 Regulation of biological process 261 252 0.038 
GO:0050877 Neurological system process 30 19 0.039 
GO:0010556 Regulation of macromolecule biosynthetic process 112 97 0.041 
GO:0042127 Regulation of cell proliferation 25 15 0.043 
GO:0050794 Regulation of cellular process 253 245 0.047 
GO:0010468 Regulation of gene expression 115 101 0.048 
GO:0009889 Regulation of biosynthetic process 112 98 0.048 
GO:0043406 Positive regulation of MAP kinase activity 6 1 0.050 
GO:0040007 Growth 12 5 0.050 

 

a Fisher’s exact test p-value (one-sided) for a higher number of human-neotenic genes in a GO group 
compared to genes in the other phylo-ontogenetic categories.  
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Table S12. Effects of biological and technical factors on gene expression. 

The table shows the effects of age, species difference, sex, RNA quality and brain pH, 
and interactions between these factors, on gene expression in the brain. Effects were 
measured using linear regression models on all 7,958 expressed genes in the human-
chimpanzee dorsolateral prefrontal cortex dataset. The significance of each factor is 
assessed based on the number of genes with F-test p<0.05 for that factor, compared to 
1,000 random permutations. The false discovery rate (FDR) is also estimated by these 
permutations. Factors separated by colons indicate interaction effects.  

 

Main factor 
  

% significant 
among all 
expressed  

p-value  %FDR 

Sp 60.5 <0.001 7 
Sex:Sp 6.5 0.236 63 
Age:Sp 23.1 0.006 20 

Species (Sp) 

Sex:Age:Sp 11.5 0.153 43 
Age 67.3 <0.001 10 
Sex:Age 6.8 0.252 63 
Age:Sp 23.1 0.072 31 

 
Age 

Sex:Age:Sp 11.5 0.360 79 
Sex 4.4 0.950 279 
Sex:Age 6.8 0.339 82 
Sex:Sp 6.5 0.772 138 

Sex 

Sex:Age:Sp 11.5 0.338 80 
Rna 32.8 0.039 40 
Rna:Age 6.2 0.394 85 
Rna:Sp 10.2 0.347 80 

RNA quality 
(28S/18S) 

Rna:Age:Sp 9.1 0.491 99 
pH 26.7 0.045 33 

Brain pH 
pH:Age 3.6 0.706 129 
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Table S13. Correlation between age and clinical and demographic variables. 

Results are based on the 39 human dorsolateral prefrontal cortex samples. 
 

  N a 
Mini-
mum a 

Median  

a 
Maxi-
mum a r b P b rho c P c 

28S/18S d 35 0.8 1.5 1.9 0.09 0.61 0.17 0.33 
5’-3’ slope e 39 3.63 4.15 5.24 -0.06 0.72 -0.27 0.10 
pH f 37 6.36 6.74 6.96 0.09 0.61 0.25 0.13 
PMI g 38 4 17.5 44 -0.27 0.10 -0.32 0.05 
Sex h 39 - - - 0.00 0.98 -0.07 0.67 

 

a Number of samples with estimates for a variable, and the minimum, median and maximum values of the 
variable among the samples. 
b Pearson coefficient and p-value for a parametric correlation between age and the variable in question. 
c Spearman coefficient and p-value for a non-parametric correlation between age and the variable in 
question. 
d 28S/16S RNA ratio. 
e The slope between expression intensity and 5’ to 3’ position of probes in a probeset, averaged across all 
probesets, calculated by the “AffyRNADeg” function (R “affy” package). To calculate this measure, we 
used the original Affymetrix 133Plus2.0 CDF file. 
f Brain pH. 
g Post-mortem interval: hours between subject death and tissue storage. 
h Sex of individuals; females coded as 0 and males as 1. 
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Table S14. The number of probes and genes in the microarray datasets used in the 

study. 

We masked probes that do not match the respective species’ genomes perfectly and at a 
unique location. We only accepted genes with at least 8 probes. Genes which are detected 
among 1/3 of subjects in at least one species are considered expressed. Genes are 
synonymous to probe sets where Custom CDF files (3) are used. See SI text for details. 
 

Sp
ec

ie
s 

B
ra

in
 re

gi
on

 

N
 in

di
vi

du
al

s 

C
D

F 

Pr
ob

es
 b

ef
or

e 
m

as
k 

Pr
ob

es
 a

fte
r m

as
k 

G
en

es
 b

ef
or

e 
m

as
k a

 

G
en

es
 a

fte
r m

as
k,

 
w

ith
 ≥

 8
 p

ro
be

sa  

Pr
ob

es
 p

er
 g

en
e 

(m
ea

n)
 a
 

Pr
ob

es
 p

er
 g

en
e 

(m
ed

ia
n)

 a
 

Ex
pr

es
se

d 
ge

ne
s b

 

Human 

Dorso-
lateral PFC 
+ Caudate 
nucleus 

39+13 

U133P2 
Ensembl 
Custom 
CDF 

276826 - 17427 15964 17 11 10543 

Human + 
chimpanzee 

Dorso-
lateral PFC 39+14 

U133P2 
H-C 
Masked 
Custom 
CDF 

276826 208941 17427 11956 15 12 7958 

Human + 
chimpanzee 
+ rhesus 

Dorso-
lateral PFC 

39+14
+9 

U133P2 
H-C-R 
Masked 
Custom 
CDF 

276826 86559 17427 3747 13 11 3075 

Human + 
chimpanzee 
+ rhesus 

Superior 
Frontal 
Gyrus 

9+ 9+ 
9 

HuGene1.0 
H-C-R 
Masked 
Affymetrix 
CDF 

862560 235751 33843 20882 16 13 11333 

Mus 
musculus + 
Mus spretus 

Whole 
Brain 9+ 9 

MG430_2 
M-S 
Masked 
Custom 
CDF 

239706 194078 16316 12346 14 11 8362 

 
a In this column, “gene” refers to Ensembl genes in datasets where we use Custom CDF files. For the 
HuGene 1.0 dataset, “gene” refers to transcripts as defined by Affymetrix. 
b In this column, “gene” refers to Ensembl genes in all datasets. 
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Table S15. The proportion of age-related genes. 

The false discovery rate (FDR) is estimated by 1,000 permutations. The permutation 
based p-value for the age effect is < 0.005 in all datasets. We choose a p-value cutoff for 
each dataset/subset that ensures an FDR close to 10%, shown in bold. 
  

 

p-value  
cutoff 

Number of 
significant 

genes 

% significant 
among all 
expressed 

% FDR 

0.05 5740 72.1 11.1 

0.045 5653 71.0 10.1 

0.01 4699 59.0 2.4 

0.005 4350 54.7 1.2 

Dorsolateral PFC  
 
39 humans 

0.001 3669 46.1 0.2 

0.05 4227 53.1 14.8 

0.03 3713 46.7 9.8 

0.01 2842 35.7 4.1 

0.005 2409 30.3 2.4 

Dorsolateral PFC  
 
14 humans 

0.001 1566 19.7 0.7 

0.05 4399 55.3 15.2 
0.03 3857 48.5 10.2 
0.01 2901 36.5 4.3 

0.005 2403 30.2 2.5 

Dorsolateral PFC  
 
14 chimpanzees 

0.001 1534 19.3 0.8 
0.05 4558 40.2 20.2 

0.015 2690 23.7 9.6 
0.01 2228 19.7 7.7 

0.005 1625 14.3 5.1 

S Frontal Gyrus 
 
9 humans 

0.001 733 6.5 2.3 

0.075 6106 73.0 9.8 

0.05 5747 68.7 6.3 

0.01 4409 52.7 1.3 

0.005 3865 46.2 0.7 

Mouse 
 
9 Mus musculus 

0.001 2672 32.0 0.2 
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Table S16. The proportion of genes differentially expressed between species.  

The false discovery rate (FDR) is estimated by 1,000 permutations. The permutation 
based p-value for the species effect is < 0.001 in all cases. We choose a p-value cutoff for 
each dataset/subset that ensures an FDR ~10%, shown in bold. The FDR for age-related 
genes is close to the FDR for all expressed genes (data not shown).  
 

 

p-value cutoff 
Number of 
significant 

genes 

% significant 
among all 
expressed 

% FDR 

0.05 5506 69.2 38.4 

0.01 4480 56.3 19.4 

0.005 4109 51.6 14 

0.0025 3790 47.6 9.8 

Dorsolateral PFC  
 
39 humans vs 
14 chimpanzees 

0.001 3424 43.0 6 

0.05 4384 55.1 16.7 

0.025 3809 47.9 10.3 

0.01 3185 40.0 5.2 

0.005 2772 34.8 3.1 

Dorsolateral PFC  
 
14 humans vs 
14 chimpanzees 

0.001 2049 25.7 0.9 

0.06 2743 34.5 10.3 

0.05 2564 32.2 8.8 

0.01 1295 16.3 2.4 

0.005 983 12.4 1.4 

Dorsolateral PFC  
 
6 adult humans vs 
5 adult chimpanzees 

0.001 467 5.9 0.4 

0.055 2440 33.2 10.2 

0.05 2366 32.2 9.3 

0.01 1195 16.2 2 

0.005 867 11.8 1.2 

Dorsolateral PFC (2) a  
 
6 adult humans vs 
5 adult chimpanzees 

0.001 400 5.4 0.2 

0.05 4996 44.1 19.7 
0.015 3332 29.4 10.4 
0.01 2911 25.7 8.3 

0.005 2290 20.2 5.7 

S Frontal Gyrus 
 
9 humans vs 
9 chimpanzees 

0.001 1345 11.9 2.2 
0.05 8048 76.3 12.1 

0.04 7866 74.6 10.2 

0.01 6818 64.7 3.2 

0.005 6373 60.4 1.9 

Brain regions 
 
13 cortex vs 
13 caudate nuc. 

0.001 5323 50.5 0.5 

0.05 4645 55.5 21.7 

0.01 3251 38.9 8.9 

0.005 2799 33.5 6.1 

Mouse 
 
9 M.musculus vs 
9 M.spretus 0.001 1940 23.2 2.1 

 
a Differential expression among adolescents and adults using the published the dataset from (1).  
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Table S17. Lineage assignment of human-chimpanzee differences.  

The numbers of differentially expressed genes for which we can assign expression 
differences to the human lineage (human-specific) or chimpanzee lineage (chimpanzee-
specific) using rhesus macaque as an outgroup (at one-sided Wilcoxon test p<0.05). 
 

 Dataset Dorsolateral 
PFC 

Dorsolateral 
PFC 

S Frontal 
Gyrus 

 
Number of humans vs 
chimpanzees 
compared  

14 vs 14 39 vs 14 9 vs 9 

Total 716 1058 977 
Human specific 287 398 309 
Chimpanzee specific  203 334 252 

Differentially 
expressed and 
age-related  

% human specific 58.6 54.4 55.1 
     

Total 695 352 2355 
Human specific 235 115 657 
Chimpanzee specific  237 134 1028 

Differentially 
expressed and not 
age-related 

% human specific 49.8 46.2 39.0 
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Supporting Materials and Methods 
Sample collection and hybridization to microarrays  

Sample collection. All human postmortem brain tissue samples were obtained from the 

NICHD Brain and Tissue Bank for Developmental Disorders (NICHDBB) (Baltimore, 

MD, USA). Informed consent for use of the human tissues for research was obtained in 

writing from all donors or the next of kin. All subjects were defined as normal controls 

by forensic pathologists at the NICHDBB. No subjects with prolonged agonal state were 

used; cause of death is shown in Table S1. Chimpanzee samples were obtained from the 

Yerkes Primate Center (Atlanta, GA, USA), the Anthropological Institute & Museum of 

the University of Zürich-Irchel, (Zürich, Switzerland), and from the Biomedical Primate 

Research Centre (Rijswijk, Netherlands). 10 chimpanzee individuals were genotyped by 

sequencing the HVR1 region of the mitochondrial genome; all except one belonged to the 

Western chimpanzee population (Table S1; see Supporting Data at page 63). The 

dorsolateral PFC rhesus macaque samples were obtained from the German Primate 

Center (DPZ) (Goettingen, Germany), and for the superior frontal gyrus, from the 

SuZhou Experimental Animal Center (SuZhou, China). All non-human primates used in 

this study suffered sudden deaths for reasons other than their participation in this study 

and without any relation to the tissue used. For the mouse experiment, WSB/EiJ (Mus 

musculus) and SPRET/EiJ (Mus spretus) strain mice were purchased from the Jackson 

Laboratory (Bar Harbor, Maine, USA) and bred in our facility.  

Tissue dissection. The human dorsolateral prefrontal cortex samples were dissected from 

the middle third of the middle frontal gyrus, from coronal slabs rostral to the head of the 

caudate nucleus, and from the equivalent region in the non-human primates. This is a 

cortical region approximately corresponding to Brodmann area 46. For all samples 

special care was taken to dissect primarily grey matter, but we cannot exclude the 

possibility of some contamination from white matter, and we assume the proportion of 

grey matter to be in the order of 90-95% of the total sample. The human caudate nucleus 

samples were taken from the central part of the nucleus in order to avoid any cross-

contamination by adjacent brain structures. The superior frontal gyrus samples were 

taken from the cortical region approximately corresponding to Brodmann area 9 of the 
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prefrontal cortex; we aimed to make dissections that contain 2:1 grey:white matter (60-

70% grey matter). For the mouse experiment we used whole brains. Expression profiles 

of adult mouse whole brains mainly reflect expression of the cerebral cortex compared to 

striatum or cerebellum (data not shown).  

No samples showed any substantial RNA degradation, as measured using an Agilent 

Bioanalyzer (Agilent Technologies, Palo Alto, USA) indicating good tissue preservation. 

Detailed information for the human dorsolateral PFC samples, including age, sex, brain 

pH, postmortem interval, and death cause, are given in Table S1. 

RNA extraction and chip hybridization. All experimental procedures have been 

previously described elsewhere (1). In brief, total RNA was extracted from 

approximately 100 mg of the dissected tissue sample (primates) or the whole brain (mice) 

using standard TriZOL® protocol with no modifications and purified with the 

QIAGEN® RNeasy MiniElute kit following the "RNA cleanup" protocol. RNA quality 

was assessed using the Agilent 2100 Bioanalyzer system. For each sample, 1 microgram 

(HG-U133P2 experiments), 2 micrograms (HuGene 1.0 ST experiments), or 5 

micrograms (MG-430 2.0 experiments) of isolated total RNA was used as starting 

material for the standard Affymetrix eukaryotic target preparation protocol (see 

http://www.affymetrix.com/support/technical/byproduct.affx?product=hg-u133-plus, 

http://www.affymetrix.com/support/technical/byproduct.affx?product=moe430-20, 

http://www.affymetrix.com/products_services/arrays/specific/hugene_1_0_st.affx). Each 

sample was then hybridized to an Affymetrix® HG-U133 Plus 2.0 GeneChip array, an 

Affymetrix® Human Gene 1.0 ST array, or an Affymetrix® Mouse Genome 430 2.0 

GeneChip array.  

All raw expression data is deposited in the NCBI Gene Expression Omnibus database 

(http://www.ncbi.nlm.nih.gov/geo/; (4)) with the accession numbers GSE11512 (HG-

U133P2 experiments), GSE11528 (MG-430 2.0 experiments) (accession number pending 

for the HuGene 1.0  ST experiments). 

The effects of technical and clinical variables. To ensure that our analysis on the effects 

of age on expression is not confounded by technical or demographic variables, we first 

investigated the correlation between age and post-mortem interval (PMI), brain pH, 
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28S/18S ratio (a measure of RNA integrity), 5’-3’ intensity slope (a measure of 5’ 

degradation of transcripts), and sex, among the 39 human dorsolateral prefrontal cortex 

samples. We observe no significant correlation for any of these variables, with a single 

exception of Spearman correlation for postmortem interval (Table S13). However, this 

correlation is weak (rho=-0.32, p=0.05) and is not significant when corrected for multiple 

testing. Further, there is no significant relationship between PMI on RNA integrity (our 

results and previous results (5)). Thus, we do not expect variation in PMI among samples 

to have a significant influence on our results. Similarly in the superior frontal gyrus 

dataset, RNA quality levels among samples do not show any correlation with age 

(Spearman correlation test p>0.5), or difference among species (ANOVA F-test p=0.3). 

We then explicitly estimated the effects of the RNA quality (28S/18S ratio) and brain pH 

and their possible interactions with age and species on each gene in the DLPFC human-

chimpanzee dataset. We used multiple regression models and compared the results to 

1,000 permutations of each factor (Table S12). Both factors affect the expression levels 

of ~25% expressed genes, and these proportions are significant in the permutation test 

(p<0.05). However, none of the interaction terms (age-pH, age-28s/18s, species-28s/18s) 

are significant (p>0.1). In addition, removing genes with significant pH or 28s/18s ratio 

effects from the dataset does not affect our principal results (Table S6). 

Regarding cause of death, as mentioned above, all non-human subjects used in this study 

suffered sudden deaths for reasons other than their participation in this study and without 

any relation to the brain. For the human subjects, we have information for 37 out of the 

39 individuals included in the dorsolateral PFC dataset (Table S1). Of the 37 individuals, 

41% of cases are noted as asphyxia, drowning or asthma, 14% sudden infant death, 24% 

related to accidents, 14% of cases are related to cardiovascular disorders. In total, 34 out 

of 39 subjects have experienced fast deaths, without experiencing prolonged agonal state, 

which is known to affect both RNA integrity and brain pH (6). Importantly, there is no 

significant bias in distribution of rapid death cases with age (rho=0.24, p=0.12). This 

result agrees with our observations that tissue pH and RNA integrity do not show 

significant interaction with age (Table S12) and indicates that cause of death does not 

have a confounding effect on our analysis. 
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The effects of sex. To measure the possible effects of sex differences on brain gene 

expression, we used multiple regression models with age, sex and species (also see 

section “The influence of age, species identity and sex on expression - a general view”). 

In contrast to the highly significant age and species effects, neither the effect of sex, nor 

sex-age and sex-species interactions were significant (permutation test p>0.3) (Table 

S12). We see that sex affects only a small number of genes (13 genes at Bonferroni 

corrected p<0.05, in contrast to 2,522 genes showing age effects and 1,737 genes 

showing species effects). All 13 sex-related genes are located on the sex chromosomes. 

Comparable results were reported previously (7).  

Thus, sex appears to have a very small effect on brain gene expression in this dataset. 

Nonetheless, to ensure that differences in sex between species do not affect our results, 

we based our main analysis in the dorsolateral prefrontal cortex dataset on a subset of 14 

humans (Fig. S1C), such that these 14 human and 14 chimpanzee samples both have 

similar ages, and a comparable sex distribution across ages. In addition, we performed the 

analysis using only males, which yielded the same principal results (Table S6). Finally, 

we note that all humans in the superior frontal gyrus dataset are male, and results from 

this analysis are consistent with our other findings (Table 1). Taken together, these 

observations indicate that sex distribution differences among species do not affect our 

results. 
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Dataset preparation and the age-scale 

All data preparation and analysis was conducted in the R statistical environment (8). 

Chip definition files for the primate datasets. Chip definition (CDF) files contain 

information about the assignment of Affymetrix® expression analysis microarray probes 

to transcripts (see http://www.affymetrix.com/support/). For analyzing our expression 

data, we used a published "Custom CDF" file, an alternative to the standard CDF files 

provided by Affymetrix, that joins all probes from the HG-U133Plus2.0 microarray chip 

belonging to the same Ensembl gene into one probe set 

(http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/CDF_downloa

d.asp; (3); version 11). We will refer to all probe sets simply as “genes”. The number of 

genes and probes in the CDF file, after excluding Affymetrix spike-in probes, are shown 

in Table S14.  

For the analysis of chimpanzee and rhesus microarray data, we masked all probes that did 

not perfectly match the DNA sequences of these species (9). For this, we mapped 

sequences of all probes present on the HG-U133Plus2.0 or HuGene1.0 arrays to the 

human (hg18), chimpanzee (panTro2), and rhesus macaque (rheMac2) genomes using the 

BLAT alignment algorithm (http://genome.ucsc.edu/FAQ/FAQblat.html) (10). Based on 

these alignments, we constructed three new CDF files, described in Table S14 and 

available at http://www.picb.ac.cn/Comparative/data.html.  

The “HG-U133P2 H-C Masked Custom CDF” is a subset of the original Ensembl 

Custom CDF, and contains probes matching both the human and chimpanzee genomes 

perfectly and at a single location (75% of the original array probes). The “HG-U133P2 

H-C-R Masked Custom CDF” contains probes matching all three genomes perfectly and 

at a single location (31% of the original array probes). The “HuGene 1.0 H-C-R Masked 

Affymetrix CDF” file is a similar subset of the original Affymetrix CDF file (see 

http://www.affymetrix.com/support/) and contains 27% of the original array probes.  

Chip definition files for the mouse dataset. As with the primate dataset preparation, we 

used the “Custom CDF” file that joins all probes on the MG-430_2.0 microarray chip that 

belong to the same mouse Ensembl genes into a single probe set ((3); version 11), and 
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removed Affymetrix spike-in probes. To compare Mus musculus and Mus spretus 

expression data we need a mouse masked CDF file that excludes probes with sequence 

differences between M. musculus (the species for which the microarray is designed) and 

M. spretus. Because the latter’s genome is currently not available, we used a method 

which uses the discrepancy between the expression levels of probes within a probe set to 

identify probes that may contain sequence differences between the two genomes 

(Dannemann et al., in preparation; also see (11)). Briefly, a statistical test is run on all 

probes in a microarray dataset to estimate the degree of consistency of their expression 

levels with the other probes in the same probe set. A low consistency (a binding affinity 

difference) suggests a sequence difference for that probe. The test was run separately on 

three expression datasets containing 6 newborn, 6 infant or 6 adult M.musculus and 

M.spretus. Any probe with a significant binding affinity difference (at cutoff 0.2; 

described in Dannemann et al.) in any of the three datasets was discarded. 19% of the 

probes in the “MG-430_2.0 Ensembl Custom CDF” file were thus masked out (Table 

S14).  

Preprocessing the human HG-U133P2 arrays. For the analysis of human brain regions, 

we extracted and summarized gene expression levels from the 39 Affymetrix .CEL files 

corresponding to the human dorsolateral prefrontal cortex samples and 13 to caudate 

nucleus samples using the “HG-U133P2 Custom CDF” file described above. For 

summarizing expression values we used the “rma” algorithm (R-Bioconductor “affy” 

package; http://bioconductor.org/packages/2.0/bioc/html/affy.html) which includes 

background correction, quantile normalization, log-2 transformation of expression levels, 

and summarizes expression levels of all probes in a probe set into one value using 

median-polishing (12). We decide on whether a gene is expressed above a background 

level on an array by testing the difference between signals from “perfect match” and 

“mismatch” probes from this array by using the Wilcoxon test (“mas5” method in the 

“affy” package) (12) and using p<0.05 as cutoff. We consider any gene with significant 

detection in >1/3 of individuals within either sample group (cortex or caudate nucleus) as 

expressed in that dataset.  

Preprocessing the primate HG-U133P2 arrays. For the human-chimpanzee comparison, 

we extracted and normalized expression data from 39 human and 14 chimpanzee 
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dorsolateral PFC samples as described above, using the “HG-U133P2 H-C Masked 

Custom CDF” file (Table S14). We consider any gene with significant detection in >1/3 

of human or chimpanzee individuals as expressed.  

For the comparison among three primate species, we extracted and normalized expression 

data from 39 human, 14 chimpanzee and 9 rhesus macaque prefrontal cortex samples 

using the “HG-U133P2 H-C-R Masked Custom CDF” file. We consider any gene with 

significant detection in >1/3 of human or chimpanzee individuals as expressed. Here, we 

do not take macaque expression into account, because genes exclusively expressed in 

rhesus macaques would not be relevant to our main research focus: human-chimpanzee 

differences. 

We also note that requiring significant detection in all individuals, or using an expression 

level based cutoff (genes with the highest 50% mean expression intensity), does not 

affect our findings (Table S6). We have also tested the possible effects of probe masking 

by a bootstrap: we randomly sampled 8 probes from each probe set with replacement, and 

repeated the full analysis with these datasets. We find that bootstrapping probes does not 

affect our findings (see legend in Table S6).  

Preprocessing the primate HuGene1.0 arrays. Probe intensities were corrected for 

background using the "antigenomic" probes with the same GC content; the latter are used 

as an estimator of the unspecific background hybridization 

(http://www.affymetrix.com/support/technical/whitepapers/exon_background_correction

_whitepaper.pdf). Probe intensities were then log-transformed and quantile normalized. 

Intensity values per transcript were calculated by median polishing. To determine 

whether the signal intensity of a given probe was above the expected level of background 

noise, we compared each probe's signal intensity to a distribution of signal intensities of 

the "antigenomic" probes with the same GC content (a GC-bin). For each GC-bin, except 

the ones with the most extreme GC content, the numbers of "antigenomic" probes are 

close to 1,000. We considered a probe signal as detected if its intensity is higher than 

95% of the background probes' intensities (13). In each array, we considered a transcript 

as “detected” if more than 50% of probes and at least 8 probes per transcript were 

detected. We considered a transcript as “expressed” if it was detected in >1/3 of human or 
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chimpanzee individuals. We mapped transcript IDs to Ensemble Genes using the table 

provided at the Affymetrix support site (“HuGene-1_0-st-v1.na26.hg18.transcript.csv”). 

For 127 genes with multiple transcripts, we calculated the means across transcripts. 

Preprocessing the mouse arrays. We extracted and normalized data from M. musculus 

and M.spretus arrays using the “MG430_2 M-S Masked Custom CDF” file (Table S14). 

Any gene with significant detection in >1/3 of individuals within either species was 

considered expressed.  

The age scale, gestation period, and age-matched groups. To analyse age-related 

differences in gene expression among samples, we first decided on whether to use a 

linear or logarithmic age scale. Log transformed ages are frequently used in analysing 

developmental phenotypes with parametric models (e.g. (14-16)). This makes the 

relationship between age and phenotype more linear. This choice is related to an 

assumption of parametric regression models, that errors be normally distributed and 

homogeneous among samples (see Chapters 13.6 and 13.7 in (17)). Sokal and Rohlf 

suggest log transformation as a primary option for continuous variables where this 

assumption does not hold. In all our datasets, when the linear age scale is used, error sizes 

are larger at the early age; this reflects the very rapid change in expression levels during 

early brain development (Fig. 1D). This bias can be considerably reduced when log-

transformed age is used: In the human-chimpanzee dataset, Pearson correlation between 

age and squared errors of cubic expression-age regression models decreases from -0.26 to 

-0.12 with the use of log age. Hence, unless indicated otherwise, we used the logarithm-

transformed age scale throughout the analysis. Nevertheless, we find similar results if the 

linear age scale is used (Table S6). 

Another issue in assigning ages to individuals is whether the ages should be counted 

starting from birth or from conception. It is likely that the postnatal gene expression 

changes represent continuation of the ontogenetic processes initiated in the prenatal 

period. To account for this, we calculated individuals’ age starting from inferred time of 

conception (for an example see (14)). The known average gestation periods are 280, 229 

and 165 days in humans, chimpanzees and rhesus macaques, respectively (18). However, 

gestation times for humans and chimpanzees may be calculated in different ways, and the 
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real human-chimp difference may be around 20 days (as pointed out by an anonymous 

reviewer). Further, actual gestation times may vary among individuals. As using a 

smaller gestation time difference than the actual one is conservative with respect to 

identifying human-neoteny, we conducted our main analyses using 280 days as gestation 

time for both humans and chimpanzees. Further, we conducted additional analysis using 

20 and 51 days as gestation time difference between the species, and obtained the same 

results (Table 1).  

Finally, in the dorsolateral PFC dataset, our analysis on species differences between 

humans and chimpanzees could be biased by unequal sampling (39 vs. 14 individuals) or 

by the differences in age distribution between the species. We therefore performed our 

main analyses using a subset of 14 human samples matching the ages of the chimpanzee 

samples as close as possible (Fig. S1C). Although this approach limits our power, e.g. in 

identifying age effects (Table S15), we obtain the same results as with the full human 

dataset (Table 1). Unless stated otherwise, our analyses of this dataset are based on the 14 

humans. We adopt a similar approach for the cortex-caudate nucleus comparison and 

choose 13 cortex samples age-matched with the caudate nucleus samples (Fig. S1D). 
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The influence of age, species identity and sex on expression - a general view 
We used a number of methods to describe the influence of age, species identity and sex 

on gene expression levels in our datasets.  

Principle components analysis. We scaled the variance of each gene to one, and used the 

“prcomp” function (R “stats” package) to calculate the principle components from the 

human-chimpanzee DLPFC dataset. The first component shows the strongest correlation 

with age, while the second component is most strongly correlated with species 

differences (Figure 1A). 

Multiple regression models of age, sex and species. To obtain an overall view of the 

effects of different factors on gene expression, for each gene, we fit a multiple regression 

model with age, species identity and sex, as well as all possible interactions among these. 

We calculated the proportion of expressed genes showing significant main factor or 

interaction effects at F-test p<0.05. We then compared the results to 1,000 permutations 

of either of the 3 factors (Table S12). We find significant age and species effects, as well 

as an age-species interaction; but we see no significant sex-related effects on expression. 

Note that a previous study on humans and mice also did not find large expression 

differences between the brains of males and females (7). 

Proportion of variance explained by age, sex and species. In addition to assessing the 

number of genes that are significantly affected by different factors, we can also measure 

how much of total expression variation can be accounted by different factors. For this, for 

each gene, we fit separate regression models for age, species identity or sex in the human 

and the chimpanzee dataset. For species and sex, we applied linear regression models, 

whereas for age, we used third degree polynomial models. We also estimated the 

proportion of variance explained by the age and species identity factors together, with 

separate age-related parameters for humans and chimpanzees. 

The proportion of expression variance attributable to factor f for gene i was calculated as: 

R2
i,f = 1 – RSSi,f / RSSi,null 

where RSSi,f is the residual sum of squares from the regression model with factor f, and 

RSSi,null is the residual sum of squares from the null model, in other words, the variance 
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multiplied by n – 1, where n is the sample size. We further estimated a significance level 

for the mean proportion of variance explained across all 7,958 genes expressed in the 

prefrontal cortex, R2
f, by randomly permuting the factor (f) assignments across samples 

1,000 times to obtain a distribution of randomized mean proportions: R2
f
*. The 

permutation p-value was defined as the frequency of permutations in which R2
f
* >= R2

f. 

The FDR was defined as the ratio between the median of the 1,000 R2
f
* values and R2

f.  

Age and species explain expression variance at significantly higher levels than in random 

permutations in all datasets (Table S2). Surprisingly, sex explained variance at levels 

significantly lower. We hypothesized the following: The sex factor in our dataset is 

correlated with neither age nor species (Pearson r = 0.02 and -0.04, respectively); 

however, when sex is randomly permuted, the new arrangements f* can happen to be 

more strongly correlated with either age or species (half the time |r*| > 0.09 and 0.07, 

respectively). Given the large influence of age and species on expression variation, f* can 

frequently explain more variance than sex itself. This effect can be shown by simulation 

(data not shown). After removing the influence of age and species on expression by using 

residuals from a multiple regression model, we find the variance explained by sex is 

neither higher nor lower than random permutations (Table S2; Fig. 1B).  

The global expression measure. To obtain a one-dimensional summary measure of 

expression variation among a set of samples across all expressed genes, we first 

calculated a matrix of Euclidean distances among the samples. Then we collapsed these 

distances into a single dimension by means of monotonic regression, a type of 

multidimensional scaling (“isoMDS” algorithm with k=1, R “MASS” package (19)). We 

call this the global expression measure. Subjects with similar values of the global 

expression measure can be inferred to resemble each other in terms of their expression 

patterns across all genes, compared to those with less similar values. The scale of this 

measure is arbitrary, and it represents only the most dominant source of variation among 

samples. We used this measure in Figure 1D, where we calculated each subjects’ global 

expression value as a percent of the range between the maximum and minimum values 

among all subjects, separately for humans and chimpanzees.  
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Tests for age, species and lineage effects - gene-by-gene analysis  
The R code used to apply the tests described below is available at 

http://www.picb.ac.cn/Comparative/data.html. 

Testing the influence of age – model selection. We first determine the effect of age on 

expression by choosing, for each gene, the best polynomial regression with age as 

predictor and expression level as response. For this, we used families of polynomial 

regression models and the “adjusted r2” criterion (20). Namely, we fit a third degree 

regression model with age to each gene: 

Yij = β0i + β1i Aj + β2i Aj
2 + β3i Aj

3 + εij,                                 (1) 

where Yij is the expression level for gene i with i = 1,..., m and subject j with j = 1,..., n, 

Aj is the age of the subject j, and εij is the error term.  

We further calculate the six possible submodels of equation (1), e.g. Yij = β0i + β1i Aj + εij, 
Yij = β0i + β1i Aj + β2i Aj

2 + εij,  etc.  

Then we compare all seven models to the null model: 

Yij = β0i + εji                 (2) 

by means of an F-test. We choose the model with the highest “adjusted r2” value as the 

best choice (20). If the model is significant in the F-test at a predetermined significance 

cutoff, we consider this gene age-related ("age+"). 

We make three notes at this point:  

First, the highest adjusted r2 reflects the amount of variance explained by the model, but 

penalized by the number of parameters of the model – this approach therefore avoids 

overfitting (choosing models with unnecessary parameters). 

Second, we do not test each model against each other, but use the adjusted r2 criterion to 

compare models. This method is both time-efficient and effective. We show in 

Supporting Note 1 that if a model is significant and has the highest adjusted r2, this is 

good indication that it would also be at least marginally better (at F-test p<0.10) if 

directly compared to alternative models, 96% of the time.  

Third, we do not attempt to correct for multiple testing with respect to the number of 

models tested, because the tests with different models conducted on a single gene are not 

independent. Furthermore, we use a permutation test to assess overall significance of the 

result (see below). 
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We also tried the cubic smoothing spline as an alternative to third degree polynomials in 

order to describe the relationship between expression and age (“smooth.spline” function, 

R “stats” package). We tested seven smoothing spline models with degrees of freedom 

ranging from 2 to 8, following the procedure described above for the polynomial 

regression models. We chose the best model (the best number of degrees of freedom) by 

comparing each model to the null model [equation (2) above] using the F-test, and 

choosing the one with the highest adjusted r2. In the dorsolateral prefrontal cortex dataset, 

at the same significance cutoff (p<0.045) we find 73% age-related genes using spline 

models, compared to 71% when using polynomial regression models. Furthermore, 99% 

(5,578 of 5,653) of genes identified as age-related using the regression models are 

similarly identified using the spline models.  

Testing the influence of age – FDR. We used permutations to estimate the false 

discovery rate and decide on the F-test significance cutoff for each dataset. We randomly 

permuted age assignments across individuals within a species 1,000 times, repeated the 

regression analysis for all genes and recorded the F-test p-values. For each p-value cutoff 

(e.g. 0.05) we calculated the number of genes with p-values below the cutoff in the 1,000 

permutations. The median of this distribution is our false positive estimate. The ratio 

between this estimate and the original number of significant genes is the false discovery 

rate (FDR). Note that this FDR estimation is conservative (21). In addition to FDR, the 

frequency of permutations in which the number of significant genes is equal to or greater 

than that observed can be considered a p-value for a transcriptome-wide age-effect. Table 

S15 shows the results of this age-test in a number of datasets. For each dataset, we chose 

a p-value cutoff that would fix the FDR close to 10%. Table S8 shows the overlap 

between age-related genes identified in different datasets. 

Testing species differences – model selection. For each gene, we determined differential 

expression between two species by multiple regression: comparing the outcomes of 

regression models with and without a species term (an approach similar to the one 

described in (22)). For non-age-related genes, this approach is equivalent to a t-test. For 

age-related genes, we have already chosen a regression model with age for human, and 

we determine whether incorporating chimpanzee-specific parameters into this regression 

model significantly improves it. Specifically, using the F-test, we compare the null model 
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(i.e. the regression model with age but no chimpanzee-specific parameter) with a family 

of models containing a chimpanzee specific intercept. In addition, for each age-related 

parameter of the null model, we included a chimpanzee-specific term. For example, if the 

null model (best fitting model with age for human) for gene i was a linear one:  

Yij = β0i + β1iAj + εij,   

we compare it to the two alternative models: 

Yij = β0iC + β1iAj + εij , and  

Yij = β0iC + β1iCAj + εij. 

where β0iC and β1iC are the chimpanzee-specific intercept and slope. We choose the model 

with the highest adjusted r2. We then decide on the significance of the chosen model 

using an FDR-based p-value cutoff.    

Testing species differences – FDR. We measured the false discovery rate using the same 

approach as the age-test, by running 1,000 random permutations of species identity 

assignments across samples. However, in order to preserve the structure in the data with 

respect to age as much as possible, and only randomize species identity, we permuted 

humans and chimpanzees of similar age. Specifically, in a permutation, each time a 

chimpanzee is assigned to the first group, the human with the closest age to that 

chimpanzee is assigned to the second group (see Fig. S1C). Consequently, the age 

distributions of the two randomly formed groups are similar to the original age 

distributions. We then apply the multiple regression test to these randomly chosen groups 

and compare the results to the original one. We accept the median of the 1,000 

permutations’ number of significant genes as the random expectation (Table S16). The p-

value for a transcriptome-wide species effect is the frequency of permutations that yield 

as many significant genes as observed. The transcriptome-wide p-values and FDR’s for 

age-related and non-age-related genes are similar (data not shown).  

Table S16 shows the results of this species-test on a number of datasets. For each dataset, 

we chose a p-value that would fix the FDR close to 10%. Table S8 shows the overlap 

between differentially expressed genes identified in different datasets. Note that using the 

same sample size (6 adult humans and 5 adult chimpanzees) and the same statistical 
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criteria to define differently expressed genes, the proportion of differentially expressed 

genes in our DLPFC dataset is very similar to a previously published dataset (1) (Table 

S16). Further, the majority of differently expressed genes overlap between the two 

datasets (50-52%) (see Table S8).  

Human or chimpanzee lineage assignment. We used the rhesus macaque as an outgroup 

to assign expression differences between humans and chimpanzees to the human or to the 

chimpanzee evolutionary lineages. We note that this test was limited by the relatively 

small number of rhesus samples in the dorsolateral PFC dataset (n=9), the limited age-

range of rhesus macaques, and especially the loss of power for expression level 

estimation: more than two-thirds of probes are masked due to sequence mismatches 

among species (Table S14).  

For each gene, we determined whether the rhesus expression profiles are closer to the 

human or to the chimpanzee profile using the following procedure: First, we estimate the 

expression-age curves for the human and chimpanzee groups, separately. The regression 

model for the curve is chosen based on the age-test, described above. For non-age-related 

genes, the curves are simply the species means. Second, we calculate the absolute 

distances of each rhesus individual’s expression level to each curve. Third, we test if the 

distances to the human curve are larger than the chimpanzee curve by a one-sided paired 

Wilcoxon test (Table S17). Note that because we do not have a prior hypothesis, the real 

significance level is twice as low (observed p=0.05 corresponds to actual p=0.10).  

We calculated FDR for the lineage test using the permutation method described for the 

species-test: we permute species identities while conserving the age-distributions of the 

groups. The FDR for both the dorsolateral PFC and the superior frontal gyrus datasets 

was between 80%-95%, although the test was significant (more genes assigned to 

lineages than in random permutations, p<0.05 in both datasets). This is surprising, given 

that there is considerable overlap between the two brain region datasets (DLPFC and 

SFG) for human- specific and chimpanzee-specific genes identified in these datasets, 

better than for the species-test results (Table S8). We therefore do not try to control FDR 

in this test but use different p-value cutoffs for assigning genes to lineages (Table 1).  
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To test robustness of the evolutionary lineage assignment we conducted an alternative, 

although not independent, lineage assignment procedure: Using the test for expression 

differences between species described above, we classified genes as human-specific if 

they showed significant differences between humans and chimpanzees and between 

humans and rhesus macaques, but not between chimpanzees and rhesus macaques (and 

vice versa for chimpanzee-specific genes). Among 351 lineage-specific genes identified 

by this method (at two-sided p<0.05 for both tests), 198 were also identified by the first 

method, and all but two were classified consistently. Further, we find the same excess of 

human-neotenic genes using this lineage assignment method (Table S6). 
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The heterochrony test for gene expression 
The R code used to apply the heterochrony test is available at 

http://www.picb.ac.cn/Comparative/data.html. 

The principle of the heterochrony test. In this test, we are comparing the ontogenetic 

expression patterns of one taxon with another taxon (e.g. the human versus the 

chimpanzee) with respect to timing differences. We assume that both taxa follow an 

ontogenetic trajectory of the same general shape. For a gene, whenever there is a 

difference in ontogenetic rates, or timing, between the two taxa (e.g. humans maturing 

twice as slow as chimpanzees), the expression values of one taxon will correspond to 

expression values of younger or older stages of the other taxon. Therefore, transforming 

the ages of the second taxon (e.g. multiplying the chimpanzees’ ages by a certain factor) 

can produce an improved fit between the two groups’ expression distributions with age 

(Fig. S3). Any gene for which this improvement is statistically significant, we term 

heterochronic. Further, depending upon the direction of the age transformation, we 

classify heterochronic genes as neotenic or accelerated in one taxon versus another. For 

example, genes exhibiting delayed maturation in human versus chimpanzee are called 

neotenic in human. About the use of the term neoteny with reference to morphometric 

literature, see Supporting Discussion. 

A critical assumption of the heterochrony test is that trajectories of expression change 

with age are comparable in shape across species. Morphometric comparisons of human 

and ape skull development has found largely different growth trajectories between these 

species (23). However, our results show extensive positive correlation between 

ontogenetic expression trajectories – not only between humans and chimpanzee, but also 

between primates and rodents. This indicates that the assumption of similar 

developmental trajectories between humans and chimpanzees is applicable to the vast 

majority of genes expressed in brain (Table S4 and Fig. S2).  

Defining models to compare human and chimpanzee. We start by determining, for each 

gene, the best cubic smoothing spline curve that describes expression changes with age in 

the reference species. We use human as the reference species in our analysis, but using 

chimpanzee yields similar results (Table S6). We use spline models here rather than cubic 
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polynomial regression, because spline curves are more flexible and thus can fit the 

expression data more closely, which facilitates comparing the human curve and 

chimpanzee expression values. However, using polynomial regression also does not 

affect the results (data not shown). 

Given the human spline curve, we try alternative models on each gene (transforming the 

chimpanzee age scale or shifting the chimpanzee mean expression level) to improve the 

fit between chimpanzee expression values (Yij) and the human curve (Y'ij). For example, 

if the best fitting model for human for gene i was linear, the estimate of the expression 

value for individual j for gene i would be: 

Y'ij = β0i + β1iAj,   

where the parameters β0i and β1i describe the human curve, and Aj is the log2-transformed 

age of the chimpanzee j. The sum of squared differences between these estimates (Y'ij) 

and the real chimpanzee expression values (Yij) represents, among different sources of 

variation, differences in developmental rates of the two species: 

∑j (Yij – Y'ij)2 = ∑j (Yij – [β0i + β1iAj] )2.              (3) 

(a) Model A - the age-shift model: Now, instead of using the real ages for the 

chimpanzees, we redefine these. Assuming that the shape of curves are similar in the two 

species, we seek a constant (C) to add to all chimpanzee subjects’ ages that will 

compensate for the difference between the rates of ontogenetic change: 

ACj = C + Aj. 

Note that C, or the age-shift, is also on the log2-transformed age-scale; hence adding C to 

Aj is equivalent to multiplying non-log-transformed ages by 2C. C is therefore a ratio 

between developmental rates. C > 0 implies that chimpanzee ontogenesis is accelerated 

with respect to human -- this is synonymous to human ontogenesis being delayed, or 

neotenic. The reverse is true if C < 0. 

In order to find a good estimate of C given the expression data, we use an iterative non-

linear least squares algorithm, “NL2SOL” (“nls” function, R “stats” package) and search 

for a value of C (staring from 0) that minimizes the sum of squared differences between 
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the observed chimpanzee expression values and expression values estimated from the 

human curve at the transformed chimpanzee ages (ACj): 

∑j (Yij – Y'ij)2 = Yij – [β0i + β1i(C + Aj)] )2.  

In other words, we estimate the age-shift, C, that minimizes the differences between rates 

of age-related expression change in humans and chimpanzees. The sign of C will imply 

whether human ontogenesis is delayed or accelerated relative to chimpanzee.  

(b) Model B - the expression-shift model: For each age-related gene, we can estimate an 

age-shift, C, as described above. But it is also conceivable that differences between the 

chimpanzee expression values (Yij) and the estimated expression values from the human 

model (Y'ij), may be better explained by a shift of average expression levels between the 

two species (M), that is fixed across ages. Following the above example, if the human 

expression-age model for gene i were linear, we would estimate the M that minimizes: 

∑j (Yij – Y'ij)2 = ∑j (Yij – [β0i + β1iAj + M] )2.  

which is simply the mean difference between Yij and Y'ij. 

(c) Model AB - the combined model: This is the combination of models A and B. We 

again use the “NL2SOL” algorithm to jointly estimate the age-shift (C) and expression-

shift (M), by finding the values that minimize:  

∑j (Yij – Y'ij)2 = ∑j (Yij – [β0i + β1i(C + Aj) + M] )2.  

The search for both parameters starts from 0. Occasionally the NL2SOL algorithm cannot 

converge on C and M estimates in the AB model. This happens when the C and M have 

equivalent effects on Yij – Y'ij, so that the algorithm cannot disentangle the two.  

Fig. S3 presents an example of how an age-shift can improve the fit between the human 

spline curve and the chimpanzee expression values. 

Choosing significant models. After the age-shift (C) and expression-shift (M) are 

estimated by the Models A, B, and AB, we use the F-test to compare each of these 

models to the null model (equation 3 is an example for the null model). We also compare 

the models A and B to model AB by the F-test. A significant F-test result indicates that 
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the tested model is both more parsimonious and explains significantly greater amount of 

variation than the null model.  

Having estimated C and M using these three different models and having estimated their 

significance using the F-test, we proceed to classify genes into neotenic or accelerated 

categories -- genes showing patterns compatible with human neoteny or acceleration. 

Specifically, for a gene to be classified as heterochronic, first, the F-tests should provide 

support for the significance of the age-shift, and second, this support should at least as be 

as strong as that for the expression-shift -- there is no evidence for heterochrony if the 

expression-shift (Model B) is significantly better than Models A and AB. We defined the 

following set of conditions (“condition set 1”) to decide on whether there is support for 

heterochrony, and which model’s C estimate to use -- A or AB: 

a) Model AB is the best among the three models (has the highest adjusted r2) and is 

significantly better than the null model (p<0.05, F-test). For these genes, the C estimate 

from model AB is the best estimate for the age-shift.  

b) Model A is the best among the three models and is significant (p<0.05, F-test). We 

consider the C estimate from model A as our best estimate.  

c) Model B is the best among the three models and significant (p<0.05, F-test). But 

model A is also significant (p<0.05), and model AB is not better than model A (p>0.05), 

which implies that the expression-shift is not significantly better than the age-shift 

(following the J-test logic described in (24)). We then accept the C estimate from model 

A.  

d) Model B is the best model and significant (p<0.05, F-test). But model A is also 

significant (p<0.05). In addition, model AB does not converge (see above) suggesting 

that models A and B are alike. In this case, model A is considered as good as model B, 

and we accept the C estimate from model A.  

Once we decide on which C estimate to use, we classify a gene as neotenic or accelerated 

in human versus chimpanzee, depending on whether C is positive or negative, 

respectively. We further use the F-test p-value as a measure of the significance of this 
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estimate. In the main analysis we use p<0.05 as cutoff (unless otherwise indicated). We 

discuss the false negative and positive rates of the test below.  
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Classifying genes in phylo-ontogenetic categories, false positive and negative rates 
Significance criteria for classification. We assign genes into four phylo-ontogenetic 

categories based on the type of the heterochrony found between humans and chimpanzees 

(neoteny or acceleration), and on the placement of the corresponding expression change 

to an evolutionary lineage (the human or the chimpanzee lineage) (Fig. 3A, Table 1). 

Based on these parameters, human-neotenic genes are the ones that show a neotenic shift 

in human versus chimpanzee, and the expression changes are assigned to the human 

evolutionary lineage using the rhesus macaque. Human-accelerated genes show an 

accelerated pattern in human versus chimpanzee, and expression changes are assigned to 

the human lineage. Chimpanzee-accelerated genes show a neotenic pattern in human vs 

chimpanzee, but expression changes are assigned to the chimpanzee lineage. Therefore, 

we infer that for such genes the chimpanzee expression changes with age are accelerated 

with respect to human. Chimpanzee-neotenic genes are the ones that show an accelerated 

pattern in human versus chimpanzee and the expression changes are assigned to the 

chimpanzee lineage (Table 1 and Table S6).  

We used three sets of significance cutoffs to define phylo-ontogenetic categories. (a) The 

default was using FDR=10% for the age and species differences, one-sided binomial test 

p<0.05 for the lineage assignment test, and F-test p<0.05 for the heterochrony test; we are 

unable to directly control FDR for the latter two tests. (b) p<0.10 for all four tests. (c) 

p<0.01 for all four tests (Table 1). p<0.10 may appear too relaxed for a cutoff, but as we 

may have high false negative rates in our tests, using relaxed cutoffs may increase our 

power to observe species-specific heterochrony.  

Testing the bias towards human-neoteny. We conducted two tests to assess whether the 

number of human-neotenic genes is greater than expected by chance, given the results of 

the heterochrony and the lineage tests (Table 1 and Table S6): (a) among all genes 

assigned to the human lineage (human-specific genes), we asked if the number of human-

neotenic genes is larger than the number of human-accelerated genes, (b) among all genes 

classified as neotenic, we asked if human-specific genes are more than chimpanzee-

specific genes. In both cases we used one-sided binomial tests. 
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Excess of human-neotenic genes under alternative criteria or assumptions. In line with 

the human neoteny hypothesis, we found a significant excess of human-neotenic genes in 

both tests, which cause human expression profiles to resemble younger chimpanzees 

(Fig. S4). Furthermore, the two independent datasets from different brain regions 

(DLPFC and SFG) showed the same results. To test the robustness of this result, we 

further conducted parallel analyses with different sets assumptions and criteria with 

respect to the number of individuals used per species, the gestation time, sex of 

individuals used in analysis, choice of the lineage assignment test, choice of logarithmic 

or linear age scales, and the choice of reference species in the heterochrony test (Table 

S1, Table S6). We also performed the analyses by excluding genes affected by technical 

factors, changing the criteria for defining which genes are expressed, and randomly 

selecting probes within probe sets (Table S6).  

Finally, we applied two alternative conditions sets to define heterochrony besides the one 

used above. (a) We defined a more stringent set of conditions, requiring support for the 

age-shift be unequivocal compared to the support for an expression-shift (“condition set 

2”; described in Supporting Note 2). (b) We only used the age-shift (C) estimate from 

Model A, ignoring Models B and AB (“condition set 3”). Regardless of the method, we 

find the same excess of neotenic genes (Table S6).  

In these analyses, we focused on the dorsolateral PFC dataset, where we have 

considerably larger sample sizes. Nonetheless, the same tests applied to the SFG dataset 

result in the same excess of human-neotenic genes (data not shown). 

False positive and false negative rates of phylo-ontogenetic assignment. We used 

several approaches to estimate the false positive and the false negative rates of the phylo-

ontogenetic classification in the human-chimpanzee dorsolateral PFC dataset (Table S7).  

First, we estimated the false positive rate by comparing humans against humans. For this 

we simply compared 14 humans to 14 other humans with a similar age distribution, using 

either group as reference species. Here, although we do not expect any, we find that 25-

30 genes showing significant results with respect to the species-difference, heterochrony, 

and lineage tests using the default significance cutoffs (Table S7). This can be contrasted 

with the 299 genes in the real human-chimpanzee comparison with the same sample size. 
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These results suggest that our overall result have a false positive rate in order of 10% at 

these significance cutoffs (Table S7). The false positive rate increases to ~30% at relaxed 

p-value cutoffs (p<0.1 for all tests). Also, the test appears to be biased towards 

identifying acceleration, rather than neoteny (this is also apparent in the simulation 

discussed below).  

Second, we examined the false negative rate by simulating neoteny and acceleration. We 

again compared 14 humans with another group of 14 humans, but after dividing the ages 

of the first group by 2. We can identify only 27% of age-related genes as delayed, that is, 

significantly “group-one-human”-neotenic or “group-two-human”-accelerated (Table 

S7), while 100% is expected without noise and any bias in our tests. As expected, the 

number of genes showing significant heterochrony in direction opposite to the simulated 

one is negligible. Given the simulation conditions and assuming a two-fold difference in 

the developmental rate affecting the entire transcriptome, these results suggest high false 

negative rate of our tests: in the order of 75%. When we simulate acceleration in the 

reference species, our tests identify a larger number of accelerated genes, 33%. This 

suggests that, in addition to the high false negative rates, our tests may be biased towards 

finding more accelerated than neotenic genes.  

We also applied the same procedure by simulating a 1.5 times rate difference (instead of 

2) between group-one and group-two. This time we estimate 20% of age-related genes as 

delayed when simulating neoteny, and 26% as accelerated when simulating acceleration. 

The important point is that if a neotenic shift of such magnitudes (1.5-2 times faster 

development in chimpanzees relative to humans) were affecting the entire transcriptome, 

the power of our study would be sufficient to identify a much greater proportion of the 

neotenic genes than discovered in the real data (Table S7). Therefore, a developmental 

change of this magnitude that equally affects all genes is improbable. 
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Comparing mice with primates and human caudate nucleus with cortex  

Age and species effects in the mouse. We conducted analyses on the influence of age and 

species identity in the Mus musculus and Mus spretus (musculus-spretus) dataset 

following the same procedure as for the human-chimpanzee dataset. First, using the 8,362 

expressed genes in the musculus-spretus dataset, we calculated the proportion of variance 

explained by age and species using third degree polynomial models and linear models, as 

described above, and conducted 1,000 permutations. We also applied the test for age and 

species effects, as described above, conducted 1,000 permutations for each test, and 

assigned genes to classes at FDR=10% (Table S15 and Table S16).  

Note that the proportion of expression variance explained by age in mice is substantially 

larger than both the primate dorsolateral prefrontal cortex and superior frontal gyrus 

experiments (Table S2). This can potentially be explained by the larger number of 

postnatal developmental changes in the mouse brain (14), the controlled environment of 

the mice reducing the impact of environmental factors on the individual expression 

variation, as well as the low genetic variation within the mouse groups. 

Conservation of age-related changes in mice and primates. Using mouse gene 

expression changes with age, we sought to assess the level of conservation of age-related 

expression changes in rodents and primates. To do so, we first obtained a list of 

orthologous human and mouse genes from the Ensembl Biomart 

(http://www.ensembl.org/biomart/; (25)). Among the 22,207 orthologs in the dataset, we 

chose the “one-to-one” orthologs, which left us with 14,941 human-mouse orthologs. We 

compared the primate and mouse experiment results using three different approaches. 

First we compared the overlaps between age-related genes in the two experiments using 

the Fisher’s exact test. This comparison yields a small but significant overlap between 

age-related genes identified in primates and mice (Table S8).  

Second, we directly compared age-related changes in the different datasets. For this, (i) 

we grouped individuals in the human-chimpanzee dataset into three age groups that 

would approximate the developmental states of the three mouse age groups: Newborns 

(younger than 1 year of age), adolescents (between 10 and 14 years of age), and adults 
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(between 25 and 50 years of age). 7, 3, and 2 human prefrontal cortex samples, and 6, 3, 

and 2 chimpanzee prefrontal cortex samples fell in these three age groups, respectively. 

(ii) For each age group in each species, for every expressed gene, we calculated the mean 

expression level among individuals in an age group. (iii) Using these average gene 

expression values in the three age groups, we compared all taxa (humans, chimpanzees, 

M. musculus and M. spretus) in pairs. Namely, for each pair of species, for a set of 

expressed orthologs, we calculated the Pearson correlation between the mean expression 

levels of the three age groups. Table S4 shows the median correlation coefficient for each 

pair of taxa among 2,599 age-related (age+) orthologs and 388 non-age-related (age-) 

orthologs (genes which are age-related or non-age-related in both primates and rodents) 

(Table S4). For age- genes, we find either weak or no correlation between primate and 

rodent expression profiles. In contrast, the average correlation between humans and the 

mouse species for age+ genes is comparable to that between humans and chimpanzees. 

Third, for Fig. S2, we first normalized the expression levels of the 2,599 human-mouse 

age+ orthologs in each species’ dataset to mean 0 and variance 1. We then clustered these 

genes into four groups based on the expression levels of the 3 human age groups, using 

K-means clustering (“kmeans” function in the R “stats” package). Finally we plotted the 

mean expression levels of genes in all four clusters for all four species. 

Caudate nucleus ontogenesis compared with prefrontal cortex. We processed the 

dataset containing expression profiles of the 39 human dorsolateral prefrontal cortex and 

13 human caudate nucleus samples following the same steps as for the human and 

chimpanzee comparison. First, among the 10,543 expressed Ensembl genes, we identified 

7,437 age-related genes (at F-test p<0.045, FDR=10%) using the 39 prefrontal cortex 

samples. Next, we tested each gene for expression level differences between the 

prefrontal cortex and caudate nucleus using the species-test (Table S16). For each gene 

showing significant age and species effects, we tested the existence of a developmental 

shift in the caudate nucleus expression-age profile compared to prefrontal cortex using 

the heterochrony test. We applied the tests on a subset of 13 prefrontal cortex samples 

age-matched to the 13 caudate nucleus samples (Fig. S1D), as well as all 39 cortex 

samples. Details are presented in Table S5.  



 57 

Characterizing human-neotenic genes 

Gene Ontology analysis. To test whether human-neotenic genes are overrepresented in 

particular biological functions compared to genes in the other three phylo-ontogenetic 

categories, we used functional annotation provided by the Gene Ontology (GO) 

Consortium (26) and a statistical algorithm developed for testing gene distributions along 

the GO taxonomies, func_hyper (http://func.eva.mpg.de; (27)). We used Ensembl 

Biomart annotation (http://www.ensembl.org/biomart/; (25)) to assign genes to GO 

categories. The Gene Ontology is structured as three taxonomies: biological process, 

molecular function and cellular component, each of them containing large numbers of 

nested functional groups. The func_hyper program runs hypergeometric tests for 

enrichment across all GO groups within a taxonomy; for each GO group, it tests whether 

there is a larger overlap between genes in that GO group and a set of genes of interest, 

compared to a control set of genes. Next, given the number of enriched GO groups, 

func_hyper runs a permutation test and calculates an overall p-value for the whole 

taxonomy, indicating whether the patterns of enrichment within a taxonomy are out of 

ordinary (27). This ensures that the enrichment signal is reliable given multiple 

hypothesis testing. The three taxonomies are not independent, and here we only used the 

"biological process" taxonomy. 

We compared human-neotenic genes to all genes assigned to the other three phylo-

ontogenetic categories. We find no global enrichment, however, we do find a number of 

enriched GO groups identified both in the dorsolateral PFC and superior frontal gyrus 

datasets (Table S10 and Table S11). The lack of global significance in GO analysis with 

these gene-selection criteria is most likely due to relatively small numbers of genes 

identified as human-neotenic. Indeed, when using relaxed gene detection criteria with no 

cutoff for the number of expressed probes in a probe set, with the resulting approximately 

three-fold increase in numbers of analyzed genes, we again find the same GO groups as 

before, and the global enrichment of human-neotenic genes among GO categories is 

marginally significant (p<0.10). Similarly, when we applied the same approach to test 

functional specificity of 5,653 age-related genes compared to all 7,958 expressed genes in 

the human-chimpanzee dorsolateral prefrontal cortex dataset (Table S3), we find highly 

significant overall enrichment (p=0.003). 
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Grey vs. white matter specificity. We determined whether human-neotenic genes are 

enriched among genes highly expressed in grey matter or the white brain matter, 

compared to genes in the other three phylo-ontogenetic categories. For this, we used data 

from a study where expression profiles of grey matter or white matter had been measured 

in two regions of the human prefrontal cortex, Brodmann areas 9 and 47 (2). Using this 

data, we defined sets of genes with grey or white matter specific expression by the 

following procedure: We downloaded the table titled "588_probesets.xls" in (2), and for 

each of the 22,215 Affymetrix® HG-U133A array probe sets in the table, we (i) 

calculated the mean percentage of detected samples in the two regions, (ii) calculated the 

mean log ratio of white matter to grey matter in the two regions, (iii) selected probe sets 

which had a mean detection frequency larger than 50% and an absolute log ratio larger 

than 3 (in the original study the authors had used 1.5; we chose to be more stringent), (iv) 

mapped Affymetrix probe sets to human Ensembl genes using the Ensembl Biomart 

(http://www.ensembl.org/biomart/), (v) removed genes that occurred in both sets. The 

resulting 1,155 and 578 genes were used as grey matter and white matter-specific gene 

sets, respectively, among all 9,892 expressed genes in this dataset. Using the Fisher’s 

exact test, we compared human-neotenic genes with genes in the three other phylo-

genetic categories, with respect to their overlap with grey- or white-matter specific gene 

sets. As background, we used all expressed genes in the Erraji-Benchekroun et al. 

dataset. 

Expression divergence across life. We determined how human-chimpanzee expression 

divergence changes with age using the following procedure: For each gene, (i) we 

calculated the regression model of expression on age for the 14 human age-matched 

subjects, and separately for the chimpanzees; (ii) calculated the absolute expression level 

difference between the two curves at intervals of 0.1 age points on the log-transformed 

age scale. (iii) We normalized these differences to mean 0 and standard deviation 1 per 

gene. (iv) For each gene set of interest (e.g. human-neotenic genes), we bootstrapped over 

genes 10,000 times. We thus calculated the median and 95% confidence interval for 

divergence at each point across the age-scale (Fig. 3C). 
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Supporting notes and discussion 

Supporting Note 1: Using the adjusted r2 criterion in model selection 

In the section titled "Testing the influence of age - model selection" above, we argue that, 

among possible polynomial regression models of expression change with age, the model 

which has highest adjusted r2, and thus the smallest F-test p-value compared to the null 

model should be relatively parsimonious. This implies that such a model is also 

significantly better than other possible models with age, if directly compared to these 

alternative models. A simple simulation based on the below R code shows this the case: 

If a regression model containing factors "predictor1" and "predictor2" is significant at F-

test p<0.05 and has a lower F-test p-value than a model with only "predictor1" (when 

both are compared to the null model), then the "predictor1"+"predictor2" model is also 

better than the "predictor1" model (100% of the time at F-test p<0.15; 96% of the time at 

F-test p<0.10; %84 of the time at F-test p<0.05 in 500 runs). 

 

PERM = 500 

Mat = matrix(,PERM, 3) 

i = 1 

while (i < (PERM+1)) { 

  dependent = 1:40 

  predictor1 = rnorm(40) 

  predictor2 = rnorm(40) 

  p1 = anova(lm(dependent ~ 1), lm(dependent ~ predictor1))$P[2] 

  p12 = anova(lm(dependent ~ 1), lm(dependent ~ predictor1 + predictor2))$P[2] 

  if (p12 < 0.05 & p12 < p1) { 

    p3 = anova(lm(dependent ~ predictor1), lm(dependent ~ predictor1 + predictor2))$P[2] 

    Mat[i, ] = c(p1, p12, p3) 

    i = i + 1  

} } 

1-sum(Mat[,3]>0.1)/nrow(Mat) 



 60 

Supporting Note 2: Alternative criteria for defining neoteny 

If for a gene, the F-test results point to significantly stronger support for an age-shift than 

for an expression-shift, we consider such a gene neotenic or accelerated in the narrow 

sense. The difference from the default set of criteria described in section “Choosing 

significant models” (condition set 1), is that we now require support for the age-shift be 

unequivocal compared to the support for an expression-shift. We define three possible 

conditions to classify genes as such. A gene fulfilling one of these conditions is 

considered as showing heterochrony (see Table S6).  

a) Model AB (the combined age-shift and expression-shift model) is significantly better 

than the null model (p<0.05, F-test), and is the best among the three models (has the 

highest adjusted r2). Model AB is also better than model B (the expression-shift model) 

when the two are directly compared (p<0.05). This means that the age-shift (C) in model 

AB is significant. We then consider the C estimate from model AB as significant and as 

our best estimate for an age-correction. If the C estimate is > 0, we classify the gene as 

neotenic, if < 0, as accelerated.  

b) Model A (the age-shift model) is significantly better than the null model (p<0.05, F-

test) and the best among all three models. Model AB is also significantly better than 

model B (p<0.05) but not A (p>0.05). Together, these results indicate that the expression-

shift is trivial, whereas the age-shift (C) results in a good fit between the chimpanzee 

expression values and the human curve. 

c) Model A is best compared to the null model (p<0.05, F-test). Meanwhile model AB 

does not converge (see above) suggesting that models A and B are alike. In this case, 

model A is good enough only when it is significant (p<0.05) while model B is not 

(p>0.05). For genes fulfilling these conditions, we use the C estimate from model A. 

 

Supporting Discussion: The heterochrony test and different modes of heterochrony 

Following Gould’s 1977 book (28), Alberch et al. defined three general modes of 

heterochrony: (a) neoteny versus acceleration, referring to different rates of 
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morphological change, (b) post-displacement vs pre-displacement, referring to 

differences in the onset of morphological change, and (c) progenesis vs hypermorphosis, 

referring to differences in the duration of morphological change (29). Neoteny, post-

displacement, and progenesis are alternative paths leading to paedomorphosis, whereas 

acceleration, pre-displacement, and hypermorphosis lead to peramorphosis. 

Although these definitions have since been discussed and even changed (e.g. (30), 

reviewed in (31)), the model in general is widely accepted as a framework to analyze 

developmental changes (31-33). It is therefore appealing to know how our expression 

heterochrony test performs given these different modes of heterochrony. This is 

especially interesting because an increase in growth rates and extension of growth 

periods, such as seen in human brain or body growth relative to the chimpanzee, have 

been argued to represent human hypermorphosis, rather than human neoteny (32, 34, 35).  

We ran a simulation to observe how the heterochrony test assesses these different modes. 

We randomly generated data from Gaussian distributions, simulating a heterochronic 

change: in each case, the reference species exhibited either neoteny, post-displacement, 

or hypermorphosis (following Alberch et al.’s nomenclature) relative to the second 

species. Examples of simulated data are shown in Fig. S5 below. We then applied the 

heterochrony test to these datasets. 

In simulations of both neoteny and post-displacement, the heterochrony test estimates a 

positive age-shift in the age-shift model (model A), as expected. Therefore, using 

"condition set 1" (the default), we would classify both patterns as "neotenic."The 

question here is whether we could have distinguished neotenic and post-displacement 

patterns, for instance, by modifying our test to detect differences in the shapes and slopes 

of trajectories. This is in principle possible, but the sample sizes in our datasets would not 

be sufficient to confidently make this distinction.  

A more complicated result appears from simulations of hypermorphosis. We found that 

the age-shift model (model A) estimates a negative age-shift for examples of expression 

hypermorphy in our simulation. However, the combined age-shift and expression-shift 

model (model AB) estimated a positive age-shift, and explained a larger proportion of the 

variance. Therefore, using "condition set 1", we would classify hypermorphic gene 
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expression patterns as shown in Fig. S5 as "neotenic". This is in fact expected, as our 

algorithm was designed to classify all patterns in which human expression level is 

delayed relative to the chimpanzee as "neotenic". 

However, in contrast to neoteny and post-displacement (following Alberch et al.’s 

nomenclature), which are types of paedomorposis, hypermorphosis is a type of 

peramorphosis, or overgrowth (33). So does the large number of human-neotenic genes 

identified in our human-chimpanzee comparison, in reality reflect hypermorphic 

expression patterns? If this were the case, we would expect no excess of human-neotenic 

genes to be found when genes are classified using only results from model A ("condition 

set 3"), ignoring the expression-shift. In contrast, Table S6 shows that using "condition 

set 3" has no large effect on the excess of human-neotenic genes.  

To further understand the influence of possible hypermorphic patterns on our results, we 

built hierarchical clustering trees based on human and chimpanzee expression data, using 

all age-related and differentially expressed genes, and using human-neotenic genes. In the 

gene expression tree based on all age-related and differentially expressed genes, newborn 

humans and chimpanzees cluster together, and the two species’ adults also cluster (Fig. 

S4A). If hypermorphic patterns have a large influence among our list of human-neotenic 

genes, human adult brain gene expression would be mainly “overgrown” for these genes. 

Adult humans should then to form a clade distinct from all other groups in the human-

neotenic gene expression tree. Instead, we find here that adult humans cluster with 

juvenile chimpanzees, to the exclusion of adult chimpanzees and macaques (Fig. S4B). 

This is compatible with paedomorphosis in human expression levels, for human-neotenic 

genes. The same pattern is found in Fig. 69 in Gould (28), based on morphometric data.  

Most phenotypic characters are likely to be affected by combinations of different 

heterochronic patterns (29, 31). Thus, for most characters, heterochrony analysis will 

reveal only average patters. This is also true for gene expression differences: The patterns 

we detect at the single gene level are average tendencies. It is nevertheless interesting that 

this average tendency is biased towards delayed development, and results in human 

paedomorphosis. For historical reasons, we have chosen to use such the term “neoteny” 

for such a tendency. However, future studies using larger sample sizes, and improved 
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knowledge of regulatory processes, may allow distinguishing different modes of 

expression heterochrony that characterize human ontogenesis. 

 

Supporting Data: Chimpanzee HVR1 sequences 

>Neonat1_0_days 

GGGCGAGGATGGATTTGACTGTAATGTGCTATGTACGGTGTGTGATTGTATGTACTATGTTTTGTCAAGG
GGGGGTAGGTTTGTTGGTATCGGGGTGGGGGAGAAGTGTCGTTGGAGTTGTGTTTTATGTTTGATAGTTA
GAGGTTGATTGTTGTGCATGCTTGTAAGCATGGGGTGAAGGTTTTAATGTGGGGTGGGTTTTATGTGTTAT
AGGTAGTTGGGTAATTATGGTACCGTACAATATTCATGGTGGCTGGCAGTAATGTACGAAATACATAGCG
GTTGTAATGAATGAGCCAGTACTTAGGTGGTACTTAAATTTGCTTCCCCATGAAAGAA 

>Neonat2_1_days 

GGGACGAGGATGGATTTGACTGTAATGTGCTATGTGCGATGTACGGTTGTATGTACTATGTACTGTTAAA
AAGGTATAGGTTTGTTGGTATCGGGGTGGGAGAGGGGTGTCTTTGGAGTTGCATTTTATGTGTGACAGTT
GGGGGTTGATTGTTGTGCGTGCTTGTAAGCATAGGGTAGAGGTTGTTATGTGGGGGTGGGTTTAATGTAT
TATAGGTAGTTGAGTGATTATAGTACTGTACAATATTCATGGTGGCTGGCAGTAATGTACGAAATACATA
GCGGTTGTAATGAATAGGCCAATACTTAGGTGGTACTTAAATTTGCTTCCCCATGAAAGAA 

>Guno_8_days 

GGGCGAGGATGGATTTGACTGTAATGTGCTATGTACGGTGTGTGATTGTATGTACTATGTTTTGTCAAGG
GGGGGTAGGTTTGTTGGTATCGGGGTGGGGGAGAAGTGTCGTTGGAGTTGTGTTTTATGTTTGATAGTTA
GAGGTTGATTGTTGTGCGTGCTTGTAAGCATGGGGTGAAGGTTTTAATGTGGGGTGGGTTTTATGTGTTAT
AGGTAGTTGGGTAATTATGGTACCGTACAATATTCATGGTGGCTGGCAGTAATGTACGAAATACATAGCG
GTTGTAATGAATGAGCCAGTACTTAGGTGGTACTTAAATTTGCTTCCCCATGAAAGAA 

>MowgliII_40_days 

GGGCGAGGATGGATTTGACTGTAATGTGCTATGTACGGTGTGTGATTGTATGTACTATGTTTTGTCAAGG
GGGGGTAGGTTTGTTGGTATCGGGGTGGGGGAGAAGTGTCGTTGGAGTTGTGTTTTATGTTTGATAGTTA
GAGGTTGATTGTTGTGCATGCTTGTAAGCATGGGGTGAAGGTTTTAATGTGGGGTGGGTTTTATGTGTTAT
AGGTAGTTGGGTAATTATGGTACCGTACAATATTCATGGTGGCTGGCAGTAATGTACGAAATACATAGCG
GTTGTAATGAATGAGCCAGTACTTAGGTGGTACTTAAATTTGCTTCCCCATGAAAGAA 

>Gantzi_45_days 

GGGCGAGGATGGATTTGACTGTAATGTGCTATGTACGGTGTGTGATTGTATGTACTATGTTTTGTCAAGG
GGGGGTAGGTTTGTTGGTATCGGGGTGGGGGAGAAGTGTCGTTGGAGTTGTGTTTTATGTTTGATAGTTA
GAGGTTGATTGTTGTGCGTGCTTGTAAGCATGGGGTGAAGGTTTTAATGTGGGGTGGGTTTTATGTGTTAT
AGGTAGTTGGGTAATTATGGTACCGTACAATATTCATGGTGGCTGGCAGTAATGTACGAAATACATAGCG
GTTGTAATGAATGAGCCAGTACTTAGGTGGTACTTAAATTTGCTTCCCCATGAAAGAA 

>Mirante_186_days 

GGGCGAGGATGGATTTGACTGTAATGTGCTATGTACGGTGTGTGATTGTATGTACTATGTTTTGTCAAGG
GGGGGTAGGTTTGTTGGTATCGGGGTGGGGGAGAAGTGTCGTTGGAGTTGTGTTTTATGTTTGATAGTTA
GAGGTTGATTGTTGTGCATGCTTGTAAGCATGGGGTGAAGGTTTTAATGTGGGGTGGGTTTTATGTGTTAT
AGGTAGTTGGGTAATTATGGTACCGTACAATATTCATGGTGGCTGGCAGTAATGTACGAAATACATAGCG
GTTGTAATGAATGAGCCAGTACTTAGGTGGTACTTAAATTTGCTTCCCCATGAAAGAA 

>Herman_4361_days 

GGGCGAGGAGGGGTTTGACTGTAATGTGCTATGTACGGTGTATGGTTGTATGTACTATGTTCTGTCAAGG
GGAGATAGGTCTGTTGGTATCGGGGTGGGGGAGGGGTGTCGTTGGAATTGTGTTTTATGTTCGACAGTTG
GGAGTTGATTGTTGTGCGTGCTTGTAAGCATGGAGTGAAGGTTTTGATGTGGGAGTGGATTTTATGTACT
ATAGGTAGTTGGGTGATTATGGTACTGTACGATATTCATGGTGGCTGGCAGTAATGTACGAAATACATAG
CGGTTGTAATGAATGAGCCAGTACTTAGGTGGTACTTAAATTTGCTTCCCCATGAAAGAA 

>Koos_4415_days 
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GGGCGAGGATGGATTTGACTGTAATGTGCTATGTACGGTGTGTGATTGTATGTACTATGTTTTGTCAAGG
GGGGGTAGGTTTGTTGGTATCGGGGTGGGGGAGAAGTGTCGTTGGAGTTGTGTTTTATGTTTGATAGTTA
GAGGTTGATTGTTGTGCGTGCTTGTAAGCATGGGGTGAAGGTTTTAATGTGGGGTGGGTTTTATGTGTTAT
AGGTAGTTGGGTAATTATGGTACCGTACAATATTCATGGTGGCTGGCAGTAATGTACGAAATACATAGCG
GTTGTAATGAATGAGCCAGTACTTAGGTGGTACTTAAATTTGCTTCCCCATGAAAGAA 

>Japie_4480_days 

GGGCGAGGATGGATTTGACTGTAATGTGCTATGTACGGTGTGTGATTGTATGTACTATGTTTTGTCAAGG
GGGGGTAGGTTTGTTGGTATCGGGGTGGGGGAGAAGTGTCGTTGGAGTTGTGTTTTATGTTTGATAGTTA
GAGGTTGATTGTTGTGCGTGCTTGTAAGCATGGGGTGAAGGTTTTAATGTGGGGTGGGTTTTATGTGTTAT
AGGTAGTTGGGTAATTATGGTACCGTACAATATTCATGGTGGCTGGCAGTAATGTACGAAATACATAGCG
GTTGTAATGAATGAGCCAGTACTTAGGTGGTACTTAAATTTGCTTCCCCATGAAAGAA 

>Reba_16131_days 

GGGCAAGGATGGATTTGACTGTAATGTGCTATGTACGGTGTGTGATTGTATGTATTATGTTTTGTCAAGGG
AGGGTAGGTTTGTTGGTATTAGGGTGGGGGAGAAGTGTCGTTGGAGTTGTGTTTTATGTTCGATAGTTGG
GGGTTGATTGTTGTGCGTGCTTGTAAGCATGGGGTGAAGGTTTTAATGTGAGGTGGATTTTATGTGCTATA
GGTGGTTGGGTGATTATGGTACTGTACAATATTCATGGTGGCTGGCAGTAATGTACGAAATACATAGCGG
TTGTAATGAATGAGCCAGTACTTAGGTGGTACTTAAATTTGCTTCCCCATGAAAGAA 
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Figure S6: Chimpanzee phylogenetic tree based on HVR1  

The mitochondrial HVR1 locus was successfully sequenced in 10 chimpanzee 

individuals. A neighbour joining tree was calculated with the gamma distribution (gamme 

= 0.32) using these 10 sequences (labelled by each individual’s name in the figure), as 

well as HVR1 sequences from chimpanzees of Western (WC), Eastern (EC) and Central 

(CC) populations, and bonobos (Anne Fischer, unpublished data). Note that only one 

individual (Neotenat2, 1 day old) groups together with Central and Eastern chimpanzees; 

the other nine cluster with Western individuals.  
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