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Abstract

We present scMAGeCK, a computational framework to identify genomic elements associated with multiple
expression-based phenotypes in CRISPR/Cas9 functional screening that uses single-cell RNA-seq as readout.
scMAGeCK outperforms existing methods, identifies genes and enhancers with known and novel functions in cell
proliferation, and enables an unbiased construction of genotype-phenotype network. Single-cell CRISPR screening
on mouse embryonic stem cells identifies key genes associated with different pluripotency states. Applying
scMAGeCK on multiple datasets, we identify key factors that improve the power of single-cell CRISPR screening.
Collectively, scMAGeCK is a novel tool to study genotype-phenotype relationships at a single-cell level.

Introduction
Pooled genetic screens based on CRISPR/Cas9 genome en-
gineering system is a widely used method to study the
functions of thousands of genes or non-coding elements in
one single experiment [1–3]. Recent CRISPR screening
combined with single-cell RNA-seq (scRNA-seq) provides
a powerful method to monitor gene expression changes in
response to perturbation at a single-cell level. These tech-
nologies, including Perturb-seq [4, 5], CRISP-seq [6],
Mosaic-seq [7], and CROP-seq [8], enabled a large-scale
investigation of gene regulatory networks, genetic interac-
tions, and enhancer-gene regulations in one experiment.
CRISPR screening coupled with scRNA-seq, which will

be referred to as “single-cell CRISPR screening”, enables
detecting the expression changes of whole transcriptome at
a single-cell level. One can potentially search for perturbed
genomic elements that lead to the differential expression of
certain gene of interest. This approach resembles a
fluorescence-activated cell sorting (FACS) experiment,
where single cells are separated into groups of high (or low)
expression of certain marker. Such “virtual FACS” experi-
ment [7] can be performed on unlimited numbers of

phenotypes, represented by the expressions of genes (or
gene signatures). Therefore, single-cell CRISPR screening
greatly eliminates the limitation of traditional screening ex-
periment, where only one phenotype can be tested. How-
ever, few efforts were made to evaluate this approach, and
no computational methods are available for the “virtual
FACS” analysis based on single-cell CRISPR screening data.
Here we present scMAGeCK, a computational frame-

work to systematically identify genes (and non-coding ele-
ments) associated with multiple phenotypes in single-cell
CRISPR screening data. scMAGeCK is based on our previ-
ous MAGeCK models for pooled CRISPR screens [9–11],
but further extends to scRNA-seq as the readout of the
screening experiment. scMAGeCK consists of two
modules: scMAGeCK-Robust Rank Aggregation (RRA), a
sensitive and precise algorithm to detect genes whose
perturbation links to one single marker expression, and
scMAGeCK-LR, a linear-regression-based approach that
unravels the perturbation effects on thousands of gene
expressions, especially from cells that undergo multiple
perturbations.
We demonstrated the ability of scMAGeCK to perform

functional analysis from single-cell CRISPR screens. We
applied scMAGeCK on public datasets generated from
CROP-seq [8], a widely used protocol for single-cell
CRISPR screening [12–14]. When compared with t-SNE
clustering analysis, we found that for all the datasets, only
one to two genes are enriched in clusters, while

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: zhgene@zju.edu.cn; wli2@childrensnational.org
†Lin Yang, Yuqing Zhu and Hua Yu contributed equally to this work.
4Center for Stem Cell and Regenerative Medicine, Department of Basic
Medical Sciences, and The First Affiliated Hospital, Zhejiang University School
of Medicine, Hangzhou 310058, Zhejiang, China
1Center for Genetic Medicine Research, Children’s National Hospital, 111
Michigan Ave NW, Washington, DC 20010, USA
Full list of author information is available at the end of the article

Yang et al. Genome Biology           (2020) 21:19 
https://doi.org/10.1186/s13059-020-1928-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-020-1928-4&domain=pdf
http://orcid.org/0000-0002-2163-7903
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:zhgene@zju.edu.cn
mailto:wli2@childrensnational.org


scMAGeCK identified many targets whose expressions are
downregulated upon knockout with statistical significance.
In the evaluation and comparison experiment, scMAGeCK
demonstrates better specificity and sensitivity than other
existing methods in analyzing single-cell CRISPR screens.
Applying this approach to phenotypes, we identified onco-
genic and tumor-suppressor genes and enhancers, by sim-
ply testing their associations with MKI67 (Ki-67), a
commonly used proliferation marker. We further tested
our scMAGeCK approach on mouse embryonic stem cells
(mESCs) and identified key genes associated with different
pluripotency states. These outcomes indicated that scMA-
GeCK enabled the reconstruction of a complex genotype-
phenotype network.
Finally, we studied key factors that determine the statis-

tical power of single-cell CRISPR screens. The efficiency
of gene knockouts (or knockdowns) varies between differ-
ent targets and different single cells. Highly expressed tar-
get genes tend to have a stronger effect of downregulation
compared with moderately or lowly expressed targets.
Screens with high multiplicity of infection (MOI), where
multiple sgRNAs enter into one cell, have improved sensi-
tivity and specificity compared with screens performed in
low MOI.

Results
scMAGeCK method overview
We previously developed MAGeCK and MAGeCK-
VISPR, two algorithms to model gene knockouts from
genome-wide CRISPR/Cas9 screens [9, 10]. MAGeCK
models the read counts of single-guide RNAs (sgRNAs)
using a negative binomial (NB) distribution and prioritizes
genes with a revised robust rank aggregation algorithm
(alpha-RRA, [15]). The alpha parameter introduced in
MAGeCK is used to determine significant and non-
significant gRNAs. In addition, “MAGeCK-VISPR” models
complex experimental designs using a generalized linear
model and an expectation-maximization (EM) approach to
optimize all the parameters.
scMAGeCK applies the statistical models of MAGeCK

and MAGeCK-VISPR to single-cell CRISPR screening
data. scMAGeCK includes two modules, scMAGeCK-
RRA and scMAGeCK-LR (Fig. 1a). To identify genes
whose perturbation associated with the expression of a
gene of interest, scMAGeCK-RRA first ranks single cells
according to the target gene expression. Next, scMAGeCK
uses RRA to test whether single cells with particular gene
perturbation are enriched in a higher (or lower) expres-
sion of the target. The alpha parameter is set to limit RRA
on single cells whose marker expression is greater than
zero, therefore minimizing the effect of possible dropout
events. Another module, scMAGeCK-LR, simultaneously
investigates the effects of all possible gene expressions.
scMAGeCK-LR uses a linear regression model to calculate

the “selection” score, similar to “log-fold change,” that de-
scribes the degree of perturbations (see “Methods” for
more details).
scMAGeCK-RRA and scMAGeCK-LR provide two dif-

ferent approaches for single-cell CRISPR screening data.
As scMAGeCK-RRA is a non-parametric test method, it
is sensitive to detect subtle and non-linear expression
changes. On the other hand, scMAGeCK-LR simultan-
eously tests the expressions of thousands of genes and is
able to deal with cells targeted by multiple sgRNAs.

Comparisons with clustering analysis and other
algorithms
A typical approach to analyze perturbation effect in
single-cell CRISPR screening is “enrichment by cluster-
ing”: users first cluster single cells based on their gene
expression patterns, then check whether certain sgRNAs
are enriched in one or more of these clusters using chi-
squared or hypergeometric tests. We applied this ap-
proach to several public CROP-seq datasets performed
on different cell types, including breast epithelial cells
(MCF10A), unstimulated and stimulated primary human
T cells, and myelogenous leukemia cells (K562) [12–14].
The number of perturbed genes or enhancers vary from
around 20 (MCF10A and T cell) to over 1000 (K562).
We found that the enrichment by clustering approach
only identified one to two genes whose sgRNAs are
enriched in certain clusters (Fig. 1b, Additional file 1:
Figure S1). The small number of enriched targets in
clusters, which also depends on the outcomes of cluster-
ing algorithms, limits downstream analysis, including the
evaluation of knockout efficiency.
Instead of clustering analysis, we used scMAGeCK-RRA

to investigate whether target gene knockout reduces their
expressions. In two out of three datasets, we found that
25% (MCF10A data) and 95% (T cell data) of the target
genes have reduced expressions with statistical signifi-
cance, respectively, a demonstration that scMAGeCK-
RRA better captures the effect of gene perturbation than
the clustering analysis. For example, CD3D knockout
strongly reduces CD3D expressions in single cells (Fig. 1c),
while cells targeting CD3D are not enriched in any clus-
ters (Additional file 1: Figure S1a-e).
We next compared scMAGeCK with two other

methods, MIMOSCA [5] and MUSIC [16]. MIMOSCA
uses a regularized linear model, similar with scMAGeCK-
LR, to decompose gene expression matrix (from Perturb-
seq) into a regulatory matrix, where the effect of sgRNAs
on individual genes is modeled within. MUSIC uses the
Topic Model, a method in natural language processing, to
connect biological function (“topic”) to gene expression
(“word”) in a single cell (“document”) under perturbation.
A comparison of the features available for each method is
presented in Table 1.
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Fig. 1 scMAGeCK pipeline and a comparison with clustering analysis and other methods on single-cell CRISPR screens. a An overview of the
scMAGeCK pipeline. The input of scMAGeCK includes a scaled expression matrix of all genes in all single cells, together with cell identity
information on the targets of each single cell. scMAGeCK includes two modules: RRA and LR. RRA infers gene regulatory relationship on certain
gene expression (e.g., gene A) using the rankings of single cells and takes dropout events into consideration. LR infers the gene regulatory
network on all possible gene expressions. b A comparison of scMAGeCK with clustering analysis on three different public CROP-seq datasets. The
total number of target genes, genes that are enriched in certain cluster, and genes whose downregulation is considered as statistically significant
(FDR < 0.25) are shown. Gene A is considered enriched in certain cluster are defined as single cells carrying gene A knockout consists of > 20%
total cells in that cluster, and with adjusted p value smaller than 0.25 using chi-squared test. c The ranking of genes in reducing CD3D expression
in the T cell CROP-seq dataset. d The significant GO terms (FDR < 0.05) in the permutated CROP-seq datasets as a measurement of false positives.
e The significant genes (FDR < 0.05) of each method in the permutated CROP-seq datasets. For all the datasets, we randomly selected 50
expression markers and identified significant perturbations as a measurement of false positives. f The selection score distribution of scMAGeCK-LR
and MIMOSCA over 145 validated enhancer-gene pairs in [13]. The number of pairs identified by each method is shown in parenthesis

Table 1 A comparison of scMAGeCK with two available methods, MUSIC and MIMOSCA on different features

scMAGeCK-RRA scMAGeCK-LR MUSIC MIMOSCA

Analysis method Rank based Linear model Topic model Linear model

Permutation Y Y N Y

Test for certain expression-based phenotype Y Y N Y

Suitable for high MOI N Y N Y

Non-linear regulatory relationships Y N NA N

Use sgRNA-target information Y Y Y N

Use negative control Y Y Y N

R/Seurat support Y Y N N
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The performances of these algorithms are evaluated
based on three public CROP-seq datasets (MCF10A, T
cell, and K562), as well as a new CROP-seq dataset we
generated on mouse embryonic stem cells (mESCs). Since
MUSIC is an unsupervised method to identify the bio-
logical functions of perturbed genes, we first systematically
compared each method in terms of identifying enriched
Gene Ontology (GO) terms associated with each perturb-
ation. For each perturbed gene, we first permuted single-
cell sgRNA labels and identified top genes with strongest
expression changes and their enriched GO terms (see
“Methods” for more details). Since the sgRNA labels of
single cells are randomly shuffled, any significant term is
considered as false positive. Among those, scMAGeCK-
LR and MIMOSCA identified fewer enriched GO terms
than MUSIC (Fig. 1d). scMAGeCK-LR has the fewest
terms in six out of seven CROP-seq samples, demonstrat-
ing its good control of false positives.
To evaluate the sensitivity of three methods, we com-

pared the enriched GO terms on the original CROP-seq
datasets. Only terms that are found in at least two out of
three methods are considered as “ground truth” terms
(Additional file 1: Figure S2-S3), and their associated p
values are compared across different methods. Three out of
seven datasets have at least one strong GO term (q < 1e−4)
identified by multiple methods (Additional file 1: Figure
S2). Among these datasets, scMAGeCK achieved stronger
enrichment, evidenced by lower q values (Additional file 1:
Figure S2). For the rest of the datasets (Additional file 1:
Figure S3), results vary by different methods. MUSIC has
the strongest q values in some datasets (e.g., mESC and
some T cell), possibly due to the fact that the comparisons
are limited on MUSIC outputs (see “Methods”) and that
MUSIC has a relatively high false positive rate (Fig. 1d).
These comparisons did not include scMAGeCK-RRA

as scMAGeCK-RRA requires a specific expression
marker as an input. To compare the false positive rate of
using certain expression markers, we randomly selected
expression markers (from protein-coding genes) in per-
mutated CROP-seq datasets and identified statistically
significant genes (FDR < 0.05) as a measurement of false
positive (see “Methods” for more details). Three different
methods that allow specific expression marker as input
are compared: scMAGeCK-RRA, scMAGeCK-LR, and
MIMOSCA (Fig. 1e). Both scMAGeCK modules demon-
strated fewer levels of false positives than MIMOSCA,
while scMAGeCK-RRA has the fewest number of signifi-
cant genes as false positives.
The original K562 CROP-seq study used an independ-

ent approach to identify 145 canonical enhancer-gene
pairs, where enhancer perturbations significantly altered
target gene expressions [13]. We compared the corre-
sponding enhancer-gene scores and p values between
scMAGeCK and MIMOSCA (Fig. 1f and Additional file 1:

Figure S4). The majority of these enhancer-gene pairs
received negative scores from both methods, in agree-
ment with the enhancer functions on these genes. Com-
pared with scMAGeCK that outputs almost all of the
canonical pairs, MIMOSCA fails to report many of the
enhancer-gene pairs (Additional file 1: Figure S4b) or
generates zero scores (Fig. 1f). Collectively, these com-
parisons demonstrated the good control of false positives
and better sensitivity of scMAGeCK over other methods.

Identification of known oncogenic and tumor-suppressor
genes and enhancers
We first used scMAGeCK-RRA to identify genes that
modulate the expression of Ki-67 (MKI67), a commonly
used marker for cell proliferation. In MCF10A CROP-seq,
the knockout of TP53 tumor-suppressor gene strongly in-
duced MKI67 expression in corresponding single cells (ad-
justed p value = 1.5e−4; Additional file 1: Figure S5a). Other
gene knockouts (RUNX1, CDH1, and ARID1B) have similar
effect, consistent with their reported tumor-suppressor
roles in breast cancer or other cancer types [17–19]
(Fig. 2a). On the other hand, four gene knockouts signifi-
cantly reduce Ki-67 expression (Fig. 2b). Among those,
CHEK1 is a checkpoint kinase that is essential for normal
and cancer cells (Additional file 1: Figure S5b) [20], GATA3
is a critical transcription factor with known oncogenic role
[21], and RAD51 has been reported as an oncogene with el-
evated expression in multiple cancer types including breast
cancer [22]. CASP8 has multiple functions in different con-
texts [23], with a possible essential role in breast cancer cell
lines [24]. Many of these genes are consistent with their
roles as tumor suppressors or oncogenes in genome-wide
CRISPR and RNAi screens (Additional file 1: Figure S5c-d).
Some genes have opposite roles compared with genome-
wide CRISPR screens, an indication that they may function
in a cancer type-specific manner.
In the T cell CROP-seq dataset, we identified different

genes that regulate MKI67 expression in non-stimulating
and stimulating T cells (Fig. 2c) and compared their roles
in genome-wide CRISPR screens in stimulating T cells,
previously published in [14] (Fig. 2d, e). Here, we defined
a “selection score” based on the p values calculated by
scMAGeCK-RRA to describe the direction (and the de-
gree) of MKI67 regulation (see “Methods” for more de-
tails). Among those, four genes play anti-proliferation
roles in stimulating T cells (CDKN1B, DGKZ, SOCS1, and
RASA2). All these genes are top positively selected hits in
genome-wide CRISPR screens (Fig. 2e). LCP2, the stron-
gest negative selection hit in genome-wide screens
(Fig. 2d), is also identified as the top pro-proliferation
gene, consistent with its essential role in T cell function
[14]. TNFRSF9 (CD137) is a co-stimulatory factor in T
cells whose knockout reduces MKI67 expression but is
not identified in genome-wide CRISPR screens (Fig. 2d).
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In contrast, LAG3, an immune checkpoint receptor, para-
doxically reduces MKI67 expression upon knockout, a
demonstration that different platforms may provide differ-
ent results.
We next studied the expression of Ki-67 in the K562

CROP-seq dataset, where each cell is targeted by an
average of 20 sgRNAs [13]. scMAGeCK-LR is used for
the analysis, as scMAGeCK-RRA is not suitable for cells
targeted by multiple gRNAs. Overall, knocking down es-
sential genes, including ribosomal subunits and protea-
somes, reduced MKI67 expression (Fig. 2f), consistent
with their critical roles in cell functions. Several en-
hancers are among the top candidates whose perturb-
ation changed Ki-67 expression (Fig. 2f). Among those,

chr12:102249040-102249063 a putative enhancer that
negatively regulates Ki-67 expression. This enhancer is
located in the intergenic region of chromosome 12 with
strong H3K27ac signals, proximal to the transcription
start site (TSS) of two protein-coding genes (GNPTAB
and DRAM1, Fig. 2g). To further identify the target
genes, we ranked all genes/enhancers based on their per-
turbation effects on GNPTAB and DRAM1 expressions
(Fig. 2h, i). chr12:102249040-102249063 is among the
top hits on reducing the expression of DRAM1 (but not
GNPTAB). Indeed, DRAM1 (DNA damage regulated au-
tophagy modulator 1) is a tumor-suppressor gene with
decreased expression in various tumors and is required
for the induction of autophagy by the p53 pathway [25].

Fig. 2 Associations with the expression of Ki-67 (MKI67), a proliferation marker. a, b The rankings of genes that are positively (a) or negatively
selected (b) on MKI67 expression. Here, positive selection in a indicates single cells with certain target gene knockout (black rectangle on the
top) have higher MKI67 expression. c The MKI67 selection score in stimulating and non-stimulating T cells in the T cell CROP-seq dataset. Genes
performed in two different patient samples (D1/D2) are marked with different colors, and genes with FDR < 0.1 are highlighted. The selection
score is calculated based on the p values reported from RRA, with direction depending on whether it is a positively (or negatively) selected
genes. See “Methods” for more details. d, e The ranking of selected genes in c in genome-wide CRISPR screening, including negative selection
ranking (d) and positive selection ranking (e). f The MKI67 selection score and p values calculated from scMAGeCK-LR in K562 dataset. Essential
genes (ribosomal subunits and proteasomes) are marked in blue, while the tumor-suppressor-like enhancer of interest (chr12:102249040-
102249063) is highlighted in red. Inset: the distribution of MKI67 selection score between essential genes and other genes. p value is calculated
using Wilcox rank sum test. g The chromosome view of the enhancer chr12:102249040-102249063. h, i The DRAM1 and GNPTAB selection score
and their corresponding p values. The enhancer chr12:102249040-102249063 is highlighted in red
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Collectively, these results demonstrated that oncogenic
and tumor-suppressor genes (and enhancers) can be
readily identified by testing their associations with Ki-67
using scMAGeCK.
MKI67 is a widely used marker for proliferation. To

investigate the effect of different proliferation markers
(or marker combinations), we systematically compared
MKI67 with cyclin a (CCNA1/2) and cyclin E (CCNE1/
2), two cyclin family members that regulate the cell
cycle. In addition, we included one cell cycle-related
gene signature from GSEA MSigDB database (pathway
name: WHITFIELD_CELL_CYCLE_LITERATURE) [26].
We tested whether these markers are indicative of
known genes (or validated genes) that regulate prolifera-
tion (e.g., TP53, CDKN1B, LCP2; Additional file 1: Fig-
ure S6a). For K562 dataset, 53 essential genes were
identified from K562 CRISPR screening [27] whose TSS
are targeted in the CROP-seq library. These gene are
evaluated whether their knockdowns reduced prolifera-
tion marker expressions (Additional file 1: Figure S6b),
and their enrichment among all genes/enhancers in the
library using GSEA (Additional file 1: Figure S6c). Over-
all, gene signatures and MKI67 worked better than
cyclins to identify known or validated proliferation-
associated genes (with the only exception in K562 high
MOI where more essential genes are identified from
CCNA2/CCNE1). In contrast, the behaviors of cyclin
genes vary across datasets: some cyclin genes work
equally well or better than MKI67/signature (e.g.,
CCNE1 in high MOI K562), but none is served as a

stable indicator of proliferation. Interestingly, some
markers provide opposite directions in certain perturba-
tions (e.g., DGKZ knockout; Additional file 1: Figure S7).
These results indicate that various qualities of the data-
sets, compositions of cells at different stages, and the use
of different markers may contribute to different aspects
upon one single phenotype of cell proliferation.

Investigating multiple phenotypes using scMAGeCK
We set out to use scMAGeCK to study multiple pheno-
types beyond proliferation. In MCF10A CROP-seq data-
set, we studied the effect of gene knockouts on apoptosis,
as doxorubicin is known to induce apoptosis in normal
and tumor cells [28]. We used the average expression of
genes in an apoptosis signature in the MSigDB database
[26] as the readout. These genes are downregulated in a
breast cancer cell line (ME-A) undergoing apoptosis in
response to doxorubicin [29], a system mostly resemble
the experimental conditions in MCF10A CROP-seq.
Under the false discovery rate 0.1 cutoff, we found three
genes that significantly modulate the expressions of apop-
tosis signatures in two conditions (doxorubicin treatment
or mock treatment, Fig. 3a). Among those, TP53 consist-
ently served as a pro-apoptosis gene, consistent with its
critical role in apoptosis. Interestingly, BRCA1 serves as
an anti-apoptosis gene in the normal MCF10A cells, con-
sistent with previous reports that BRCA1 loss triggers
apoptosis and BRCA1 deletion causes growth inhibition in
MCF10A [30, 31].

Fig. 3 scMAGeCK on other phenotypes. a The apoptosis selection score of different genes in MCF10A CROP-seq datasets treated with
doxorubicin (y-axis) and with mock control (x-axis). Genes with FDR < 0.1 are highlighted in red. Here the average expression of signature genes
in an apoptosis gene set in MSigDB is served as a marker. The signature comes from genes that are downregulated in a breast cancer cell line
(ME-A) undergoing apoptosis in response to doxorubicin (ID: GRAESSMANN_APOPTOSIS_BY_DOXORUBICIN_DN). b The target-marker-phenotype
network in T cell CROP-seq dataset. Target genes are genes that are screened in CROP-seq dataset, while markers that are known to be
associated with resting T cells, activating T cells, and proliferation are selected. Gene regulatory relationship from non-stimulating and stimulated
cells is shown in dashed and solid lines, respectively. Genes are selected based on the FDR cutoff 0.1 from scMAGeCK-RRA
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In T cell CROP-seq data, we chose known markers
that are associated with multiple phenotypes in T cells,
including resting (IL7R), activating T cells (CD40LG,
SOCS1), and proliferation (MKI67). The outputs of
scMAGeCK enabled an unbiased construction of
genotype-phenotype network in non-stimulating and
stimulating T cells (Fig. 3b). Among these, LCP2 and
CD3D knockout significantly increases IL7R, consistent
with their essential roles in T cell stimulation. Some
genes may have opposite roles in different conditions;
for example, RASA2 is a positive regulator of MKI67 in
non-stimulating cells (Fig. 3b). On the other hand,
genome-wide screens on stimulating T cells revealed
RASA2 as a negative regulator (Fig. 2e). This is consist-
ent with CROP-seq data, although the FDR is not signifi-
cant (0.37 in stimulating T cells; Fig. 2c). This genotype-
phenotype network provides an intuitive approach to
study gene functions in different contexts.

scMAGeCK identified key genes associated with different
pluripotency states of embryonic stem cells
Having demonstrated the ability of scMAGeCK to per-
form functional analysis of multiple phenotypes, we per-
formed CROP-seq experiments to interrogate genes that
are critical for mouse embryonic stem cell (mESC) pluri-
potency and differentiation. The pluripotent state of the
mESCs is highly dynamic, including a more primitive
naïve state and a primed state ready for differentiation
[32]. As they represent two key different developmental
stages of pre- and post-implantation embryos, it is import-
ant to understand what factors regulate these two states.
We thus designed 45 guides to perturb 15 genes including
naive and primed pluripotency-associated transcription
factors and metabolic genes. CROP-seq experiments were
performed with samples in the two states of mESC (naïve
and primed), respectively (see “Methods”). Overall, we
obtained the transcriptome profiles of ~ 2000 cells per
sample using the InDrop platform [33]. t-distributed sto-
chastic neighbor embedding (t-SNE) clustering demon-
strated a clear separation of both states, not batches
(Fig. 4a). Known markers are selectively expressed in each
state, including Nanog in the naïve state, and Dnmt3b in
the primed state (Fig. 4b), respectively.
Consistent with the results from public CROP-seq data-

sets, clustering analysis only identified two sgRNAs from
two genes that are enriched in certain clusters (Add-
itional file 1: Figure S8). In contrast, scMAGeCK-RRA iden-
tified 8 out of 15 genes whose expression is reduced upon
knockout with statistical significance (Fig. 4c). For the
remaining seven genes that do not reach FDR threshold
(0.1), six have less than 100 supporting single cells. The
small number of single cells, together with other reasons
(e.g., low sgRNA efficiency, gene knockout does not change
their expression), may contribute to the “failure” to detect

target gene downregulation. Interestingly, knocking out
Lin28a/b did not change their expressions, but two gRNAs
led to some enrichment effect on a subset of cells (Add-
itional file 1: Figure S8), possibly due to the potential off-
target effects of these sgRNAs.
We next investigated the effect of individual gene

knockout on both states, using the expression of known
naïve and primed markers. To this end, we used the ex-
pression of Otx2, a primed state-specific gene [34] and a
combined expression of Nanog, Esrrb, Klf4, and Tdh,
four naïve markers, as the readout [35]. The scores of
both markers are shown for naïve and primed cells, re-
spectively (Fig. 4d). Among those, Nanog knockout
significantly reduced the naïve marker expression, con-
sistent with its critical role in naïve pluripotency [36].
Esrrb knockout decreases, whereas Tcf3 knockout in-
creases, the naive marker expressions, consistent with
the previous report that Tcf3 inhibits naïve state through
Esrrb [37]. In the primed state sample, Klf4 knockout in-
creases primed markers, demonstrating its role in main-
taining naive state and preventing differentiation [38].
Based on the known functions of perturbed genes, we

built a target-marker-phenotype network that describes
the gene regulatory network in both cell types (Fig. 4e).
The inputs of the network analysis are scMAGeCK-RRA
results, using a set of predetermined expression markers
that are known to each state (i.e., Nanog and Klf4 for
naïve state, and Otx2 for primed state in Fig. 4e).
Target-marker associations with statistical significance
(FDR < 0.01) are used to draw the network. This net-
work, constructed unbiasedly from CROP-seq data, in-
cludes previously reported naive and primed regulatory
relations. For example, Tcf3 regulates mES pluripotency
through suppressing Naong expression [39]. Klf4 may re-
strain Otx2 expression, which is supported from evi-
dences that Otx2 downregulates Klf4 and Klf absence
inhibits Nanog [40]. On the other hand, the Esrrb-Otx2
regulation in primed state is not consistent with the
known function of Esrrb, as Esrrb plays a critical role in
maintaining naive pluripotency as a direct target of
Nanog [41] and Otx2 suppress the expression Nanog
[42]. In summary, the scMAGeCK generated network
provides opportunities to unbiasedly identify known and
novel regulations.

High target expression and high MOI improves the power
of single-cell CRISPR screening
We set out to determine factors that affect the statistical
power of single-cell CRISPR screening. We first deter-
mine whether the expression of target gene is reduced in
corresponding single cells, an indication of target knock-
out efficiency. Different levels of downregulation are
observed in different datasets and samples (Fig. 1b).
Overall, we observed a strong correlation between the
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effect of downregulation (measured by the negative se-
lection p values from scMAGeCK) and median gene ex-
pression in all datasets (Fig. 5a, b, Additional file 1:
Figure S9). Genes that are highly expressed are more
likely to have a strong downregulation. For example, in
mESC CROP-seq dataset, targets may undergo different
downregulation effects in different states (Fig. 5b). Tdh,
a highly expressed gene in naïve but not in primed cells,
demonstrates strong downregulation effect only in the
naïve state (Fig. 5c, d).
Some CRISPR screening and single-cell CRISPR screen-

ing studies suggested using high multiplicity of infection
(MOI) to increase the power of screening [13, 43]. We set
out to compare the effect of high vs. low MOI in terms of

a target gene knockout effect using scMAGeCK. In the
K562 dataset, the screening is performed in two different
conditions, one with high MOI (with around 28 gRNAs
per cell) and the other with low MOI (around 1 gRNA per
cell). We evaluated the statistical power of both condi-
tions, by looking at the effect of downregulation in over
300 protein-coding genes. The selections scores of these
genes are highly correlated between two conditions (Add-
itional file 1: Figure S10a). However, over 95% of the target
genes are among the strongest downregulated genes in
high MOI screen, while only 50–60% of them ranked top
in low MOI screen (Fig. 5e, Additional file 1: Figure S10b).
For example, CD46 has the strongest downregulation for
CD46 perturbation in high MOI, but only ranks 876th

Fig. 4 CROP-seq on mouse embryonic stem cells (mESC) uncovered known regulators for stem cell differentiation. a The t-SNE plot on single-cell
expression profiles in naïve or primed states in two batches. b Selected marker expression, including Esrrb, Nanog (naïve markers), Otx2, and
Dnmt3b (primed markers). c The adjusted p values, calculated from scMAGeCK-RRA, on target gene downregulation. d The naïve marker scores as
well as primed marker scores in their corresponding cell states. Genes with FDR < 0.05 are highlighted in red. Naïve marker score is based on the
average expression of four naïve marker genes: Nanog, Esrrb, Klf4, and Tdh, while primed marker score is based on Otx2 expression. e The target-
marker-phenotype network constructed from scMAGeCK results. Only significant results (FDR < 0.01) are used to construct the network. Dotted
arrow indicates Esrrb-Otx2 that is inconsistent with known Esrrb functions
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(out of 12,000 genes) in terms of p value, and 305th in
terms of selection score in low MOI condition, respect-
ively (Fig. 5f, g). This comparison demonstrates that a bet-
ter statistical power can be obtained by increasing the
level of MOI in the screening experiment.
Across different CROP-seq datasets, K562 performed

better than the others (Fig. 1b) as both conditions
reached higher numbers of downregulated genes upon
knockdown. Two possible reasons may contribute to the
high successful rate. First, CRISPR inhibition (CRISPRi)
was used in K562 datasets to directly knock down the
expression of target gene expression. In contrast, others
datasets use CRISPR-Cas9 to knock out target gene,
whose expression may not be affected [12]. Second,
genes selected in the K562 screening generally have high
expression in K562 cell line [13], a factor that contrib-
utes to the high success rate (Fig. 5). Third, high MOI
increases the number of single cells per target gene, one
reason that the statistical power is improved compared
with low MOI. Collectively, these results indicate that to
reach a better knockdown effect in CROP-seq experi-
ments, users may select genes with moderate or high
expressions and increase the number of cells per each
gene perturbation (by increasing MOI).

Discussion
CRISPR screening using single-cell RNA-seq as readout
(“single-cell CRISPR screening”) is a promising technol-
ogy that overcomes several limitations of traditional
CRISPR screening. First, it enables an interrogation of
genotypes on potentially unlimited numbers of pheno-
types, represented by the expressions of genes or gene
signatures. In contrast, CRISPR screening only studies
one single phenotype of cell viability or reporter expres-
sion. Second, single-cell CRISPR screening reports the
effect of perturbations at the single-cell level, compared
with traditional CRISPR screening that are often per-
formed on bulk cells. To this end, scMAGeCK expands
our previous MAGeCK algorithmic framework to analyze
single-cell CRISPR screening data, providing a powerful
computational tool to link genotypes with multiple
phenotypes. The two modules of scMAGeCK provide
complementary tools to study gene perturbation in dif-
ferent contexts. scMAGeCK-RRA is an algorithm that
reaches the lowest false positive rate (Fig. 1e) and is able
to detect subtle, non-linear expression changes that
scMAGeCK-LR is not able to identify. For example,
scMAGeCK-LR failed to detect CHEK1 (score = − 0.06,
adjusted p value = 0.93) whose knockout reduces MKI67

Fig. 5 Factors that determine knockout efficiency in single-cell CRISPR screens. a The knockout effect on target gene downregulation (measured
by negative selection p value) and the median target expression in mESC dataset. b The negative selection p values of all targets in naïve and
primed states in mESC CROP-seq dataset. c, d The expression of Tdh in Tdh knockout cells and other cells in naïve and primed states. The CD46
gene is marked as red. e The fraction of target genes with the strongest p values, where target gene is ranked top ten among all other genes, in
high MOI and low MOI conditions. f, g The p value (f) and selection score (g) of all possible genes upon CD46 knockdown in K562 dataset. CD46
itself is marked as red
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expression in only a small fraction of cells (Add-
itional file 1: Figure S5b), which is readily identified as
the top hit in scMAGeCK-RRA (Fig. 2b). In contrast,
scMAGeCK-LR provides a convenient tool to model the
expressions of all genes and deals with cells infected by
multiple sgRNAs, where scMAGeCK-RRA may fail (e.g.,
in Additional file 1: Figure S11).
We tested scMAGeCK on several public CROP-seq

experiments. scMAGeCK identified potential oncogenes
and tumor-suppressor genes (and enhancers) by simply
testing their associations with the expression of Ki-67, a
proliferation marker. We demonstrated the ability of
scMAGeCK to study other phenotypes, including apop-
tosis, T cell stimulation, stem cell differentiation, etc.
These results generated from scMAGeCK enabled an
unbiased reconstruction of genotype-phenotype net-
work, providing an intuitive picture for users to study
gene regulatory network and enhancer-gene regulations.
So far, CRISPR screen studies on mESC pluripotency

or naive and primed state transition is mainly based on
genetically labeled fluorescence reporters as readout
[44–46], which is limited by only one or two genes. Here
we employed a single-cell RNA-seq combined with
CRISPR screening technology (CROP-seq) and used
whole-cell transcriptome as readout of cell fate changes.
With the aid of scMAGeCK, we were able to capture al-
teration of cell fate defined by a combination of marker
genes upon genetic perturbation and to build or refine
the regulatory network of mESCs.
Some single-cell CRISPR screening technologies (Per-

turb-seq, CRISP-seq, MOSAIC-seq) use additional bar-
codes to determine the single-cell identity. The sgRNA-
barcode correspondence may be compromised during
the screening process, which may complicate down-
stream analysis results [47–49]. Here, we exclusively
focus on CROP-seq where sgRNA itself serves as the
barcode. Once the sgRNA-barcode issue is solved with
improved protocol, scMAGeCK will be extended to
other platforms as well.
Most of the CROP-seq datasets based on target gene

knockout have a low successful rate (Fig. 1b). There may
be various reasons to the failures, including (1) low tar-
get gene expression, (2) low guide knockout efficiency,
and (3) not enough single cells to reach statistical signifi-
cance. Therefore, to increase the success rate, users may
pick up genes with moderate or high expression and/or
ensure that there are enough number of cells for the
analysis (e.g., by increasing MOI). One caveat of this ap-
proach is that target gene knockout may not necessarily
reduce its expression (Hill et al. 2018). To overcome this
limitation, one may look at the expression of known
downstream targets or switch to CRISPR inhibition in-
stead of CRISPR knockout to directly repress target gene
expression. As more CROP-seq (or other types of single-

cell technology) datasets accumulate, we may be able to
study how guide knockout efficiency affects the outcome
of the screen.
Compared with CROP-seq using low MOI condition,

high MOI reaches a better performance in terms of tar-
get gene knock down (Fig. 5d–f). However, high MOI
condition may not be suitable for CRISPR knockout
based CROP-seq, as multiple DNA cleavage within sin-
gle cell may induce strong DNA damage response in the
cells [27, 50, 51]. Further investigations are needed to
determine the best MOI for CROP-seq based on
CRISPR/Cas9 gene knockouts.
As the quality of different CROP-seq datasets varies

(e.g., Fig. 1b), choosing a proper false discovery rate
(FDR) cutoff is an essential step. The choice of appropri-
ate FDR depends on how stringent the users would like
the results would be. Users may select low thresholds
(e.g., 0.01) if they want fewer but more reliable results,
and high thresholds (e.g., 0.25) if more results are
needed and a high false positive rate can be tolerated.
Besides scRNA-seq, single-cell epigenomic profiling

could serve as the screening readout (e.g., single-cell
ATAC-seq), providing a novel approach to measure epi-
genome changes upon perturbation [52]. In the future,
scMAGeCK will support other types of single-cell se-
quencing data as the screening readout, enabling analysis
on phenotypes beyond gene expression.

Methods
The scMAGeCK algorithm
scMAGeCK consists of two modules, scMAGeCK-RRA
and scMAGeCK-LR, based on our previous MAGeCK
and MAGeCK-VISPR algorithms [15]. scMAGeCK-RRA
first ranks single cells based on the expression of gene A
of interest. Then, the RRA algorithm proposed by Kolde
et al. [12] to evaluate whether single cells bearing certain
gene X is enriched in the front of the ranked list. Sup-
pose M single cells are ranked in the experiment accord-
ing to gene A expression in the descending order,
R = (r1, r2, …, rn) is the vector of ranks of n single cells
targeting gene X (n < < M, ri ≤M where i = 1, 2, …, n),
and α is the percentage of single-cells that have non-
zero counts on gene A. We first normalize the ranks
into percentiles U = (u1, u2, …, un), where ui = ri/M(i = 1,
2, …, n). Under null hypotheses where the percentiles
follow a uniform distribution between 0 and 1, the kth
smallest value among u1, u2, …, un is an order-statistic
which follows a beta distribution B(k, n, + 1 − k). RRA
computes a p value ρk for the kth smallest value based
on the beta distribution.
For positive selection (cells with gene X knockout are

enriched in higher A expression), the significance score
of the gene, the ρ value, is defined as ρ =min(p1, p2, …,
pj), where j out of the n single cells targeting gene X
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have non-zero read count on gene A. For negative selec-
tion, single cells that are ranked in the front will have
zero counts (dropouts). Therefore, we calculated ρ =min
(pj + 1, pj + 2, …, pn) where the first j single cells have zero
counts on gene A (and are excluded from the calculation
of ρ).
To compute a p value based on the ρ values, we per-

formed a permutation test where the sgRNAs are ran-
domly assigned to single cells. We then compute the
FDR from the empirical permutation p values using the
Benjamini-Hochberg procedure.
The selection score of gene X perturbation on gene A,

calculated from scMAGeCK-RRA, combines the results
of both negative and positive selection:

sXA ¼ logpneg; if pneg < ppos
− logppos; if ppos < pneg

�

where pneg and ppos are the p values of negative selec-
tion and positive selection of perturbing gene X on gene
A expression, respectively.
scMAGeCK-LR uses a linear regression model to cal-

culate the selection scores of all genes. Let Y be the M×
N expression matrix of M single cells and N genes. Let
D be the M×K binary cell identity matrix, where djX = 1
if single cell j contains sgRNAs targeting gene X (j = 1, 2,
…, M; X = 1, 2, …, K), and djX = 0 otherwise. The effect
of target gene knockout on all expressed genes is indi-
cated in a selection score matrix S with size K ×N,
where sXA > 0 (<0) indicates gene X is positively (or
negatively) selected on gene A expression, respectively.
In other words, gene X knockout increases (or de-
creases) gene A expression if sXA > 0 (<0), respectively.
The expression matrix Y is modeled as follows:

Y ¼ D� S þ ϵ

where ϵ is a noise term following a Gaussian distribu-
tion with zero means. The value of S can be estimated
using ridge regression:

S ¼ DTDþ λI
� �−1

DTY

where I is the identity matrix, and λ is a small positive
value (default 0.01).
To compute the empirical p value, we performed a

permutation test similar with scMAGeCK-RRA, where
the sgRNAs are randomly assigned to single cells. The
FDR is then calculated using the Benjamini-Hochberg
procedure.

Public CROP-seq datasets
We used three public CROP-seq datasets. The MCF10A
CROP-seq dataset [12], T cell CROP-seq dataset [14], and
K562 CROP-seq dataset [13] are downloaded from Gene
Expression Omnibus. All datasets are profiled through the
10X Genomics platform. Raw expression matrix from cell-
ranger pipeline is imported and processed using Seurat
pipeline (version 3.0) [53]. Briefly, single cells are first fil-
tered out if they contain < 500 expressed genes or > 10%
read counts coming from mitochondria genes. The ex-
pressions of the remaining cells are normalized and scaled
based on the number of UMIs and mitochondrial gene ex-
pressions. The principal component analysis (PCA), clus-
tering analysis, and t-SNE visualization are performed
using default Seurat parameters.

Comparisons with other methods
MUSIC is an unsupervised method that only outputs gene
rankings and enriched Gene Ontology (GO) terms for
each topic and is not able to rank genes based on certain
expression-based phenotype. To accommodate the output
of MUSIC, we generated enriched GO terms for
scMAGeCK-LR and MIMOSCA as follows. We first se-
lected the top gene G of each topic T generated by
MUSIC. Then, we ranked all protein-coding genes based
on their absolute selection scores of G in scMAGeCK-LR
and MIMOSCA, chose k top genes (k is the number of
genes in T), and use clusterProfiler to identify enriched
GO terms. For consistency, we used clusterProfiler [54] to
calculate the enriched GO terms for all three methods.
For permutated CROP-seq data, we randomly shuffled

sgRNA-single cell relationship and run scMAGeCK-LR,
MUSIC, and MIMOSCA afterwards. The permutation
was repeated 10 times. Seven CROP-seq datasets are used
(MCF10A, T cell and mESC). K562 was excluded since
MUSIC was not able to run on both K562 datasets.
scMAGeCK-RRA, scMAGeCK-LR, and MIMOSCA are

further compared using randomly selected genes as expres-
sion markers. For each permuted dataset, we randomly se-
lected 50 protein-coding genes as markers and use three
different approaches to identify statistically significant per-
turbations as a measurement of false positives (Fig. 1e).

gRNA library construction
gRNA cassettes were ligated to CROP-seq-guide-puro
vector using Gibson assembly with a ratio of 20:1 at
50 °C for 1 h, then dialyze the reaction against water.
Electroporate the gRNA library to lucigen endura cells
(Lucigen cat. no. 60242–2) using Lonza 2B nucleofector
bacteria program 3. After transformation, add 1 ml pre-
warmed Recovery Medium (Lucigen) and at 37 °C for 1
h while shaking at 225 rpm. Then 1ml bacterial solution
was plated on 25 cm × 25 cm ampicillin LB-agar dish at
34 °C for 18 h, then LB medium was added to collect the
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bacteria. Plasmid DNA was extracted with Tiangen
EndoFree maxi Plasmid extraction kit (Tiangen cat. no.
DP117).

Lentivirus production for CROP-seq screens
HEK293T cells were plated onto 10-cm dishes at 6 mil-
lion cells per dish in 10ml of lentivirus packaging
medium (Opti-MEM I (Gibco), 5% FBS (Gibco), 200
mM sodium pyruvate (Gibco)). Next day, HEK293T
were transfected 11.7 μg constructed CROP-seq-guide-
puro (containing gRNA library) with lipofectamine 3000
(Invitrogen) using two packaging plasmids psPAX2
(addgene 12260) and pMD2.G (addgene 12259). The
medium was changed to lentivirus packaging medium 6
h after transfection. Viral containing supernatant were
collected at 24 and 48 h. Viruses were filtered through a
0.22-μm filter and 10% PEG 6000 was added to concen-
trate CROP-seq virus. Then CROP-seq virus were placed
at 4 °C overnight. Centrifuging 30min at 4200 rpm, dis-
carding the supernatant, and resuspending the CROP-
seq virus with 500 μl PBS were done.

Cell culture
Naive mouse ESCs were cultured in 2i/LIF medium (1:1
DMEM/F12 (Gibco) and neurobasal medium (Gibco)
containing 1%(v/v) N2 and B27 supplements (Gibco), 1
mM PD03259010 (stem cell), 3 mM CHIR99021 (stem
cell), 1000 U/ml mLIF (Peprotech), 1× L-glutamine
(Gibco), 100 mM 2-mercaptoethanol (Sigma), and 1%
penicillin-streptomycin (Gibco)) on 0.1% gelatin-coated
dishes with MEF feeders. After transducing CROP-seq
gRNA library, ESCs were transferred to FGF2/Activin
DMEM/FBS medium (1:1 DMEM/F12 and Neurobasal
medium containing 1%(v/v) N2 and B27 supplements,
10 ng/ml FGF-2 (Peprotech), 20 ng/ml Activin A (Pepro-
tech), 1× L-glutamine, 100 mM 2-mercaptoethanol, and
1% penicillin-streptomycin) for 48 h to become primed
state cells.

Single-cell RNA-seq
Single-cell RNA sequencing was performed with 1cell-
bio inDrop platform (Klein, Mazutis et al. 2015). In brief,
cells were prepared in 1× PBS containing 1% volume/
volume FBS with an input concentration of 40–60 cells/
μl. A total of ~ 6000 cells were captured per sample with
different microdevice flow rate conditions with BHM
phase varying from 40 to 60 μl/h. Photo-cleavable bar-
coding oligos were released from barcoded hydrogel mi-
crospheres (BHMs) with exposed the collected droplets
to UV (6.5 J/cm2 at 365 nm). Library preparation was
carried out with in vitro transcription (IVT), followed by
first PCR amplification with the following program be-
fore fragmentation: 1 cycle of 98 °C for 1 min, 10 cycles
of 98 °C for 7 s, 60 °C for 30 s, 72 °C for 90 s, and 1 cycle

of 72 °C for 3 min. Second PCR was conducted for final
library amplification with following program: 1 cycle of
98 °C for 2 min, 2 cycles of 98 °C for 20 s, 55 °C for 30 s,
72 °C for 2 min, 9 cycles of 98 °C for 20 s, 65 °C for 30 s,
72 °C for 2 min, and 1 cycle of 72 °C for 5 min. One lane
was used for sequencing both two samples on Hiseq X.
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