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Abstract: Protein disulfide bond is formed during post-translational modifications, and has been implicated in various 

physiological and pathological processes. Proper localization of disulfide bonds also facilitates the prediction of protein 

three-dimensional (3D) structure. However, it is both time-consuming and labor-intensive using conventional experimen-

tal approaches to determine disulfide bonds, especially for large-scale data sets. Since there are also some limitations for 

disulfide bond prediction based on 3D structure features, developing sequence-based, convenient and fast-speed computa-

tional methods for both inter- and intra-chain disulfide bond prediction is necessary. In this study, we developed a compu-

tational method for both types of disulfide bond prediction based on maximum relevance and minimum redundancy 

(mRMR) method followed by incremental feature selection (IFS), with nearest neighbor algorithm as its prediction model. 

Features of sequence conservation, residual disorder, and amino acid factor are used for inter-chain disulfide bond predic-

tion. And in addition to these features, sequential distance between a pair of cysteines is also used for intra-chain disulfide 

bond prediction. Our approach achieves a prediction accuracy of 0.8702 for inter-chain disulfide bond prediction using 

128 features and 0.9219 for intra-chain disulfide bond prediction using 261 features. Analysis of optimal feature set indi-

cated key features and key sites for the disulfide bond formation. Interestingly, comparison of top features between inter- 

and intra-chain disulfide bonds revealed the similarities and differences of the mechanisms of forming these two types of 

disulfide bonds, which might help understand more of the mechanisms and provide clues to further experimental studies 

in this research field. 

Keywords: Disulfide bond, inter-chain, intra-chain, incremental feature selection, maximum relevance minimum redundancy, 
nearest neighbor algorithm. 

1. INTRODUCTION 

 Protein disulfide bond is formed by the oxidation of thiol 
(-SH) groups between inter- or intra-chain cysteine residues, 
during post-translational modifications. Disulfide bonds are 
common to many proteins and relate closely to protein struc-
tures since they can impose geometrical constraints on the 
protein backbones [1-2]. Correct localization of disulfide 
bonds can greatly limit the search space of possible protein 
conformations [3-4] and thus facilitate the prediction of pro-
tein 3D structure. Disulfide bonds have been demonstrated to 
be involved in various physiological functions, such as he-
mostasis [5], cell death [6], G-protein-receptors [7] and 
growth factors [8]. Disulfide bonds have also been impli-
cated in various pathological processes, such as tumor im-
munity [9] and neurodegenerative diseases [6]. 
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 However, determining cysteine disulfide bonds by con-
ventional experimental approaches such as mass spectrome-
try method [10-11], NMR method [12] and radiation experi-
ment [13], may be time-consuming and labor-intensive, es-
pecially for large scale data sets. Yet, it is much more con-
venient and efficient to predict cysteine disulfide bonds us-
ing in-silico algorithms at the proteome level. Some compu-
tational methods exist in the literature for the prediction of 
disulfide bonds. For instances, Lin Zhu et al. [14] applied 
both global and local features of proteins to predict disulfide 
bonds, using support vector regression model and based on 
some newly developed feature selection methods. The disul-
fide bond prediction accuracy of their method achieved 
80.3% [14]. Rotem Rubinstein et al. [15] analyzed correlated 
mutation patterns based on multiple sequence alignments to 
predict disulfide bonds. The prediction accuracies of their 
method for proteins with two, three and four disulfide bonds 
are 73, 69 and 61% respectively [15]. The limitation of the 
method is that it cannot unambiguously predict all disulfide 
bonds of a protein if more than one fully conserved disulfide 
bond exists. Hsuan-Hung Lin et al. developed a web server 
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for disulfide bond prediction using the coordination of the 
C  of each amino acid in a protein as the feature [16]. Their 
method performed better than former methods, but it is not 
suitable for protein sequences containing cysteines located in 
the metal binding sites. F. Ferre et al. developed DiANNA 
for classifying cysteines into reduced, half-cysteine or 
ligand-bound state using a support vector machine with spec-
trum kernel [17]. Marc Vincent et al. developed methods for 
predicting disulfide bridges using two decomposition kernels 
to measure the similarity between protein sequences accord-
ing to the amino acid environments around cysteines [18]. 
Jiangning Song et al. developed a method to predict disulfide 
connectivity patterns from protein primary sequence, based 
on a support vector regression (SVR) approach using multi-
ple sequence features and secondary structures [19]. The 
above-mentioned methods primarily predict the intra-chain 
disulfide bonds [14].  

 In this work, we developed a computational method 
based on nearest neighbor algorithm (NNA) by integrating it 
with a feature selection method (IFS coupled with mRMR) 
for the prediction of both inter- and intra-chain disulfide 
bonds. Sequence conservation, residual disorder and amino 
acid factor features were used for inter-chain disulfide bond 
prediction. And in addition to these features, sequence dis-
tance between a pair of cysteines was used for intra-chain 
disulfide bond prediction. Our approach achieved a predic-
tion accuracy of 0.8702 for inter-chain disulfide bonds using 
128 features and 0.9219 for intra-chain disulfide bonds using 
261 features. Further analysis and comparison of the optimal 
feature sets (especially the top features) for inter- and intra-
chain disulfide bonds may provide clues to understand the 
disulfide bond formation mechanisms and future studies in 
this research field. 

2. MATERIALS AND METHODS 

2.1. Training and Independent Test Data Sets 

2.1.1. Training Data Sets 

 We downloaded 2930 protein sequences containing di-
sulfide bonds from SysPTM (version 1.1) [20]. A segment of 
9 consecutive residues (including cysteine itself in the center, 
4 residues upstream and 4 residues downstream) is consid-
ered as the mini-environment of each cysteine. For inter-
chain disulfide bonds, we extracted all 9-residue peptides 
resulting in totally 26858 cysteine segments. These 26858 
segments consist of 374 segments with the center cysteines 
forming inter-chain disulfide bonds and 26484 with no inter-
chain disulfide bonds. We took all 374 segments with the 
center cysteines forming inter-chain disulfide bonds as posi-
tive samples and took 1870 segments (5 folds 374*5=1870 
of the positive samples) from the 26484 negative segments 
as negative samples. From which we excluded 13 samples 
whose features cannot be calculated in the study, resulting in 
totally 2227 samples consisting of 370 positive samples and 
1857 negative samples. The training data set of inter-chain 
disulfide bond prediction was given in DataSet S1. 

 For intra-chain disulfide bonds, we calculated all cysteine 
pairs within each sequence, resulting in totally 770702 cys-
teine pairs. We then took 8457 cysteine pairs with known 
intra-chain disulfide bonds as positive samples and the re-

maining 762245 cysteine pairs as the candidates of negative 
samples. Because the sequence distance between paired cys-
teines in 94.05% of the positive samples is less than 100 
residues, we selected 42285 (5 folds 8457*5=42285 of the 
positive samples) from the remaining cysteine pairs with 
distances less than 100 residues as negative samples. By ex-
cluding cysteine pairs, either of which cannot form 9 con-
secutive residues, we totally got 46988 samples including 
7089 positive samples and 39899 negative samples. The 
training data set for intra-chain disulfide bond prediction was 
given in DataSet S2. 

2.1.2. Independent Test Data Sets 

 We downloaded 3217 protein sequences containing ex-
perimentally validated disulfide bonds from UniProt (version 
2010_06) [21-22]. We removed 2898 protein sequences that 
were already used in our training data set and protein se-
quences with less than 50 residues, resulting in 260 protein 
sequences. 

 For inter-chain disulfide bonds, we extracted all 9-residue 
peptide segment including cysteine itself and 4 residues at 
both the directions of C- and N-terminals, resulting in totally 
2750 sample peptides, including 54 positive sample peptides 
and 2696 negative sample peptides. The independent test 
data set for inter-chain disulfide bond prediction was given 
in DataSet S3. 

 For intra-chain disulfide bonds, there are totally 37948 
possible cysteine pairs, including 747 intra-chain disulfide 
bond pairs and 37201 non-disulfide bond pairs. Within the 
37201 non-disulfide bond pairs, there are 10911 cysteine 
pairs with distances less than 100 residues. We then ex-
cluded cysteine pairs, either of which having peptide seg-
ment less than 9 residues, from the 747 disulfide bond pairs 
and 10911 non-disulfide bond pairs, resulting in totally 
11213 sample cysteine pairs including 695 positive pairs and 
10518 negative pairs. The independent test data set for intra-
chain disulfide bond prediction was given in DataSet S4. 

2.2. Feature Construction 

2.2.1. PSSM Conservation Score Features 

 Evolutionary conservation is an important aspect in bio-
logical functions and plays important roles in post-
translational modifications, such as tyrosine sulfation [23] 
and disulfide bond formation [14]. In our study, we used 
position specific iterative BLAST (PSI BLAST) [24] to 
quantify the conservation probabilities of each amino acid 
against 20 amino acids, yielding a 20-dimensional vector. 
The 20-dimensional vectors for all residues in a given pro-
tein sequence formed a matrix called the position specific 
scoring matrix (PSSM). Residues that are more important to 
biological functions are usually more conserved through the 
cycles of PSI BLAST. In this study, PSSM conservation 
score was used as the conservation features of each amino 
acid in a given protein sequence. 

2.2.2. Amino Acid Factor Features 

 The diversity and specificity of protein structures and 
functions are largely attributed to the different compositions 
of amino acids, which have their own intrinsic physico-
chemical properties. The effect of amino acid properties on 
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post-translational modification has been demonstrated by 
previous studies [14, 23]. 

 AAIndex [25] is a database maintaining various amino 
acid physicochemical and biochemical properties. Atchley et 
al. [26] performed multivariate statistical analyses on AAIn-
dex. They summarized and transformed AAIndex to five 
highly compact numeric patterns reflecting polarity, secon-
dary structure, molecular volume, codon diversity, and elec-
trostatic charge. We used these five numerical pattern scores 
(denoted as “amino acid factors”) to represent the respective 
properties of each amino acid in our research. 

2.2.3. Disorder Score Features 

 Protein disordered region is a protein segment that lacks 
3-D structures under physiological conditions. Previous stud-
ies showed that these regions always contain PTM sites and 
sorting signals, and play important roles in regulating protein 
structures and functions [27-29]. 

 In our study, VSL2 [30], which can accurately predict 
both long and short disordered regions in proteins, was used 
to quantify each of the amino acid disorder status in the pro-
tein sequence by calculating the disorder score. The disorder 
scores of cysteine site and 8 flanking sites at both C- and N-
terminal are calculated as features in the study. 

2.2.4. The Feature Space 

2.2.4.1. For Inter-chain Disulfide Bonds 

 For cysteine site, 20 PSSM conservation scores and 1 

disorder score, totally 21 features were used. For each of the 

8 surrounding residues, 20 PSSM conservation scores, 5 

amino acid factors and 1 disorder score, totally 26 features 

were used. Overall, each sample was encoded by 

26 8 + 21= 229  features. 

2.2.4.2. For intra-chain Disulfide Bonds 

 We calculated the absolute values of the sum and differ-

ence of the PSSM conservations, amino acid factors and dis-

order scores between each pair of cysteine sites, resulting in 

totally 458 features. The sequence distance between the 

paired cysteine sites was also included as a feature. So the 

overall feature space contains 458+1=459 features. 

2.3. mRMR Method 

 To rank the features according to their importance, we 

used maximum relevance, minimum redundancy (mRMR) 

method [31], which could rank features based on the trade-

off between maximum relevance to target and minimum re-

dundancy to the already selected features. Features having a 

smaller index mean that they are more important features. 

 We used mutual information (MI) to quantify the relation 

between two vectors, which was defined as following: 

  

I(x, y) = p(x, y) log
p(x, y)

p(x) p( y)
dxdy          (1) 

In equation (1), x  and 
 
y  denote vectors. 

  
p(x)  and 

  
p( y)  

denote the marginal probabilistic densities. ( , )p x y  denotes 

joint probabilistic density. 

 To quantify both relevance and redundancy, we defined 

 as the whole feature set, 
 s

 as the already-selected fea-

ture set containing m features and 
 t

as the to-be-selected 

feature set containing n features. The relevance  D  between 

feature 
 
f  in 

t
 and the target  c  can be calculated by: 

  
D = I( f ,c)                          (2) 

The redundancy R  between the feature 
 
f  in 

t
 and all the 

features in s  can be calculated by: 

  

R =
1

m
I( f , f

i
f
i s

)            (3) 

 The mRMR function, which combined equation (2) and 

equation (3) and can be used to obtain the feature 
 
f

j
 in 

 t
with maximum relevance and minimum redundancy, was 

defined as following: 

  

max
f

j t

I( f
j
,c)

1

m
I( f

j ,
f

i
)

f
i s

( j = 1,2,..., n)         (4) 

 Given a feature set with 
 
N N = m + n( )  features, the 

feature evaluation will be performed N rounds. After these 

evaluations, mRMR method will generate a feature set S : 

S = f
1

' , f
2

' , ..., f
h

' , ..., f
N

'{ }            (5) 

 In this feature set S , each feature has an index h, indicat-

ing at which round the feature is selected. A more important 

feature will be selected earlier and have a smaller index h. 

2.4. Nearest Neighbor Algorithm 

 Nearest neighbor algorithm (NNA) was used as the pre-

diction model of our method. NNA calculates similarities 

between the test sample and all the training samples. In our 

study, the distance between vector p
x
 and 

 
p

y
is defined as 

following [32-33]: 

  

D( p
x
, p

y
) = 1

p
x

p
y

|| p
x

|| || p
y

||
                                              (6) 

 In equation (6), 
 
p

x
p

y
 denotes the inner product of 

 
p

x
 

and yp . 
  
|| p ||  denotes the module of vector

 
p . The smaller 
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x
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y
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p

x
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p

y
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t
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p

n
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2.5. Jackknife Test 

 There are several methods to examine the accuracy of a 
statistical prediction method, such as the independent dataset 
test, sub-sampling (e.g., 5 or 10-fold cross-validation) test, 
and jackknife test [34]. Within the above three methods, the 
jackknife test was deemed the least arbitrary that can always 
yield a unique result for a given benchmark dataset, as eluci-
dated in [35-36] and demonstrated by Eqs.28-32 of [37]. 
Therefore, investigators had increasingly recognized and 
widely adopted the jackknife test to examine the power of 
various prediction methods [38-47]. In view of this, we also 
used the jackknife test to examine the predictive power of 
our computational method. In jackknife test, every sample is 
tested by the predictor trained with all the other samples. The 
prediction accuracies for the positive samples, negative sam-
ples and the overall samples were defined as following:  

 

accuracy  positive dataset =
correctly predicted  positive samples

positive samples

accuracy  negative dataset =
correctly predicted  negative samples

negative samples

overall accuracy =
correctly predicted  positive samples + correctly predicted  negative samples

positive samples + negative samples

  

(8) 

2.6. Incremental Feature Selection (IFS) 

 After ranking features by mRMR method based on their 
importance, we used incremental feature selection (IFS) to 
determine the optimal number of features. 

 An incremental feature selection is conducted for each of 
the independent predictor with the ranked features. Features 
in a set are added one by one from higher to lower rank. If 
one feature is added, a new feature set is obtained. Thus we 
get N feature sets where N is the number of features, and the 
i-th feature set is: 

S
i

= { f
1
, f

2
,..., f

i
} (1 i N )  

 Based on each of the N feature sets, an NNA predictor 

was constructed and tested using Jackknife cross-validation 

test. With N overall accuracy prediction rates calculated, we 

obtain an IFS table with one column being the index i and 

the other column being the overall accurate rate. 
  
S

optimal
 is 

the optimal feature set that achieves the highest overall accu-

rate rate. 

 For intra-chain disulfide bond prediction, the ranked fea-

tures were added ten by ten from higher to lower rank. So we 

get the feature sets containing 1, 11, 21, 31,…, 451 features 

respectively, producing totally 46 feature sets for the 459 

features. 

3. RESULTS AND DISCUSSION 

3.1. mRMR Result 

 Using the mRMR program, we obtained the ranked 
mRMR list of 229 and 459 features for inter- and intra-chain 
disulfide bonds respectively. Within the lists, the smaller 
index of a feature indicates its more important roles in dis-
criminating positive samples from negative ones. The 

mRMR lists were used in IFS procedure for further feature 
selection and analysis. 

3.2. IFS Result 

3.2.1. Inter-chain Disulfide Bonds 

 Based on the outputs of mRMR, we built 229 individual 
predictors for the 229 sub-feature sets to predict inter-chain 
disulfide bonds. We tested each of the 229 predictors and 
obtained the IFS result which can be found in Table S1. Fig. 
(1A) shows IFS curve plotted based on Table S1. The maxi-
mum accuracy is 0.8752 containing 207 features. To focus 
our analysis on a relatively smaller set of features, we se-
lected the first feature set that achieves a predictive accuracy 
higher than 0.87 that is 0.8702 containing 128 features as the 
optimal feature set. The 128 optimal features were given in 
Table S2. 

3.2.2. Intra-chain Disulfide Bonds 

 Based on the outputs of mRMR, we built 46 individual 
predictors for the 46 sub-feature sets to predict intra-chain 
disulfide bonds. We tested each of the 46 predictors and ob-
tained the IFS result which can be found in Table S3. Fig. 
(1B) shows the IFS curve plotted based on the data in Table 
S3. The maximum accuracy is 0.9219 containing 261 fea-
tures. These 261 features were considered as the optimal 
feature set of our classifier. The 261 optimal features were 
given in Table S4. 

3.3. Optimal Feature Set Analysis  

 We investigated and compared the feature- and site-
specific distribution of the 128 and 261 optimal features for 
inter- and intra-chain disulfide bond prediction respectively. 

3.3.1. Inter-chain Disulfide Bonds 

 As shown in Fig. (2A), in the optimized 128 features, 
there were 26 amino acid factor features, 3 disorder score 
features and 99 PSSM conservation score features. This sug-
gests that all three kinds of features contribute to the predic-
tion of inter-protein disulfide bonds and conservation may 
play an irreplaceable role in inter-chain disulfide bond pre-
diction.  

 Fig. (2B) demonstrates that the center site (site 5) and 
distal sites (site 1, 2 and 9) have the greatest effect on inter-
chain disulfide bond prediction. Features of site 3, 4, 6 and 8 
have the second greatest effect on disulfide bond prediction. 
Features of site 7 have the least effect on inter-chain disul-
fide bond prediction. The site-specific distribution of the 
optimal feature set reveals that the residues at the distal sites 
and the center are more important for inter-chain disulfide 
bond prediction than residues at the directly adjacent sites to 
the cysteine.  

3.3.2. Intra-chain Disulfide Bonds 

 In the optimized 261 features, there were 47 amino acid 
factor features, 3 disorder score features, 210 PSSM conser-
vation score features and one distance feature. Fig. (2C) 
shows that all three kinds of features contribute to the predic-
tion of intra-chain disulfide bonds and conservation plays the 
most important role in disulfide bond prediction. The index 
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of sequence distance in the optimal feature set is 2, indicat-
ing its importance in intra-chain disulfide bond site predic-
tion, which is consistent with a previous study [14]. 

 The site specific distribution of the optimal feature set 
shown in Fig. (2D) demonstrates that the center (site 4, 5, 6) 
and relatively distal sites (site 1, 2 and site 8, 9) have the 
greatest effect on cysteine disulfide bond determination. The 
remaining two sites (site 3 and site 7) have less effect on 
intra-chain disulfide bond determination. The site-specific 
distribution of the optimal feature set reveals that the resi-
dues at two distal and the center sites are more important for 
cysteine disulfide bond prediction than the remaining sites.  

3.3.3. Comparison of Optimal Feature Set between Inter- 
and Intra-chain Disulfide Bonds  

 From Fig. (2A) and Fig. (2C), we can see that PSSM 
conservation, amino acid factor and disorder features all con-
tribute to both inter- and intra-chain disulfide bond predic-
tions. Site-specific distribution of the optimal feature set 
illustrated that sites at the center (site 4, 5 and 6) and two 
ends (site 1, 2 and site 8, 9) contribute more to the prediction 
of both inter- and intra-chain disulfide bonds. Site 7 contrib-
utes less to both inter- and intra-chain disulfide bond predic-
tions. Features derived from site 3 contribute more to the 
inter-chain disulfide bond prediction than to the intra-chain 
disulfide bond prediction. 

3.4. PSSM Conservation Feature Analysis 

 We investigated and compared the feature- and site-
specific distribution of the 99 and 210 PSSM conservation 
features in the optimal feature sets for inter- and intra-chain 
disulfide bond prediction respectively. 

3.4.1. Inter-chain Disulfide Bonds 

 As shown in Fig. (3A), the conservation status against 
Cysteine (C) play the most important role in disulfide bond 
prediction. The conservation status against A, M, W, H, P, 
Y, V plays the second most important role in disulfide bond 
prediction. 

 As shown in Fig. (3B), the conservation status of cysteine 
(site 5) is most important for disulfide bond prediction. Sites 
at both ends (site 1, 2, 3 and site 8, 9) play the second most 
important role in disulfide bond determination. The sites 
adjacent to the cysteine site play the least role in disulfide 
bond prediction. 

3.4.2. Intra-chain Disulfide Bonds 

 As shown in Fig. (3C), the conservation status against C, 
S and A influences most on intra-chain disulfide bond de-
termination than against other residues. The conservation 
status against R, H, K, and Y plays the second most impor-
tant role in intra-chain disulfide bond determination. 

 As shown in Fig. (3D), the conservation status at the cen-
ter (site 4, 5 and 6) and distal sites (site 1, 2 and site 8, 9) 
influence most on intra-chain disulfide bond determination. 

3.4.3. Comparison of PSSM Conservation Feature between 

Inter- and Intra-chain Disulfide Bonds 

 From Fig. (3A) and Fig. (3C), we can see that the con-
servation status against C is the most important feature for 
both inter- and intra-chain disulfide bond predictions than 
conservation scores against other residues. Conservation 
status against A, H and Y play important roles in both inter- 
and intra-chain disulfide bond predictions. However, there 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Distribution of prediction accuracy against feature numbers for inter- and intra-chain disulfide bond prediction 

(A) Distribution of prediction accuracy against feature numbers for inter-chain disulfide bond prediction. The maximum accuracy is 0.8752 

using 207 features. To focus our analysis on a relatively small set of features, we selected the first feature set that achieves prediction accu-

racy more than 0.87 as the optimal feature set, which contains 128 features with an accuracy of 0.8702. (B) Distribution of prediction accu-

racy against feature numbers for intra-chain disulfide bond prediction. The maximum accuracy is 0.9219 containing 261 features. These 261 

features were considered as the optimal feature set of our classifier.  
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Figure 2. Distribution of the optimal feature set for inter- and intra-chain disulfide bond prediction 

(A) Feature-specific distribution of the optimal feature set for inter-chain disulfide bond prediction. In the optimized 128 features, there were 

26 amino acid factor features, 3 disorder score features and 99 PSSM conservation score features. This suggests that all the three kinds of 

features contribute to the prediction of protein cysteine disulfide bonds and conservation may play an irreplaceable role in disulfide bond 

prediction. (B) Site-specific distribution of the optimal feature set for inter-chain disulfide bond prediction. The center site (site 5) and distal 

sites (site 1, 2 and 9) play the most important role in inter-chain disulfide bond prediction. Site 3, 4, 6 and 8 play the secondary most impor-

tant role in inter-chain disulfide bond prediction, and site 7 are relatively less important in inter-chain disulfide bond prediction. (C) Feature-

specific distribution of the optimal feature set for intra-chain disulfide bond prediction. In the optimized 261 features, there were 47 amino 

acid factor features, 3 disorder score features and 210 PSSM conservation score features and one distance feature. (D) Site-specific distribu-

tion of the optimal feature set for intra-chain disulfide bond prediction. The center (site 4, 5, 6) and distal sites (site 1, 2 and site 8, 9) influ-

ence most on intra-chain disulfide bond determination. The remaining two sites (site 3 and site 7) influence less on intra-chain disulfide bond 

determination.  
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Figure 3. Distribution of the PSSM features in the optimal feature set 

(A) Feature-specific distribution of the optimized PSSM features for inter-chain disulfide bond prediction. The conservation status against 

Cysteine (C) plays the most important role in disulfide bond determination. Otherwise, the conservation status against A, M, W, H, P, Y, V 

plays the second most important role in disulfide bond determination. (B) Site-specific distribution of the optimized PSSM features for inter-

chain disulfide bond prediction. The conservation status of cysteine (site 5) is most important. Conservation status of sites at both sides (site 

1, 2, 3 and site 8, 9) plays the second most important role in inter-chain disulfide bond determination. The conservation status of sites adjacent 

to the cysteine site play relatively less important role in inter-chain disulfide bond determination. (C)Feature-specific distribution of the opti-

mized PSSM features for intra-chain disulfide bond prediction. The conservation status against C, S and A are the most influential features on 

disulfide bond determination than other residues, followed by the conservation status against R, H, K, and Y. (D) Site-specific distribution of 

the optimized PSSM features for intra-chain disulfide bond prediction. The conservation status at the center (site 4, 5 and 6) and relatively 

distal sites (site 1, 2 and site 8, 9) influence most on disulfide bond determination. 
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exist some differences between these two disulfide bond 
types: for inter-chain disulfide bond prediction, the conserva-
tion status against M, W, P and V play more important roles, 
and for intra-chain disulfide bond prediction, the conserva-
tion status against S, R and K play more important roles. 

 From Fig. (3B) and Fig. (3D), we can see that conserva-
tion status at site 5 plays the most important roles in both 
inter- and intra-chain disulfide bond prediction. Conservation 
statuses at two end sides (site 1, 2 and site 8, 9) play the sec-
ond most important roles in both inter- and intra-chain disul-
fide bonds prediction. However, conservation status of site 4 
and 6 are more important for intra-chain disulfide bond pre-
diction than inter-chain disulfide bond prediction. Conserva-
tion status of site 3 is more important for inter-chain disul-
fide bond prediction than intra-chain disulfide bond predic-
tion.  

3.5. Amino Acid Factor Analysis 

 We investigated and compared the feature- and site-
specific distribution of the 26 and 47 features of amino acid 
factors in the optimal feature sets for inter- and intra-chain 
disulfide bond prediction respectively. 

3.5.1. Inter-chain Disulfide Bonds 

 We investigated the feature- and site-specific distribution 
of the 26 features of amino acid factors in the optimal feature 
set.  

 As shown in Fig. (4A), secondary structure and molecu-
lar volume play the most important role in inter-chain disul-
fide bond determination. Codon diversity and polarity play 
the second most important role in inter-chain disulfide bond 
determination. Electrostatic charge contributes least in inter-
chain disulfide bond determination.  

 As shown in Fig. (4B), amino acid factor features at site 
4 and site 6 play the most important role in inter-chain disul-
fide bond determination. The remaining 6 sites play less im-
portant role in inter-chain disulfide bond determination. 

3.5.2. Intra-chain Disulfide Bonds 

 As shown in Fig. (4C), secondary structure contributes 
most to intra-chain disulfide bond determination. Electro-
static charge and codon diversity contribute the second most 
to intra-chain disulfide bond determination. Polarity and mo-
lecular volume contribute relatively less to intra-chain disul-
fide bond determination. 

 As shown in Fig. (4D), amino acid factor features at site 
4 contribute most to intra-chain disulfide bond determina-
tion. The amino acid factor features at the remaining sites 
contribute less to intra-chain disulfide bond determination. 

3.5.3. Comparison of Amino Acid Factor Features between 
Inter- and Intra-chain Disulfide Bonds 

 From Fig. (4A) and Fig. (4C), we can see that secondary 
structure plays the most important role in both inter- and 
intra-chain disulfide bond predictions. The molecular volume 
is more important for inter-chain disulfide bond prediction 
while electrostatic charge feature is more important for intra-
chain disulfide bond prediction. 

3.6. Feature Analysis of Disorder Score  

 We investigated and compared the site-specific distribu-
tion of the 3 disorder features in the optimal feature sets for 
both the inter- and intra-chain disulfide bond prediction. 

3.6.1. Inter-chain Disulfide Bonds 

 There were 3 disorder features in the optimal feature set. 
They located at site 1, 6 and 9, indicating that the disorder 
status at directly adjacent sites and distal sites is important 
for inter-chain disulfide bond determination. 

3.6.2. Intra-chain Disulfide Bonds 

 There were 3 disorder features in the optimal feature set, 
2 located at site 9 and 1 located at site 1. This indicates the 
importance of disorder status at site 9 and site 1 on intra-
chain disulfide bond determination.  

3.6.3. Disorder Score Comparison between Inter- and In-

tra-chain Disulfide Bonds 

 For inter-chain disulfide bond prediction, disorder fea-
tures at site 1, 6 and 9 were selected. For intra-chain disul-
fide bond prediction, one disorder feature at site 1 and two 
disorder features at site 9 were selected. The results demon-
strated that disorder scores at site 1 and 9 are important for 
both inter- and intra-chain disulfide bond determinations. 
Disorder status at site 6 is important for inter-chain disulfide 
bond prediction, but it was not selected in the optimal feature 
set for intra-chain disulfide bond prediction.  

3.7. Distance Feature 

 The optimal feature set for intra-chain disulfide bond 
prediction included the sequence distance with an index of 2, 
indicating that the distance between a pair of Cysteines plays 
important role in intra-chain disulfide bond determination, 
which is consistent with a previous study [14]. 

3.8. Directions for Experimental Validation 

 We investigated the top 10 and 20 features (as shown in 
Table 1 and Table 2) in the optimal feature sets for inter- and 
intra-chain disulfide bond prediction respectively. The de-
tailed analysis of the top features may provide clues for un-
derstanding the mechanism of disulfide bond formation and 
for further experimental studies. 

3.8.1. Inter-chain Disulfide Bonds 

 In inter-chain disulfide bond prediction, there are 5 
amino acid factor features, 4 PSSM conservation features 
and 1 disorder feature among the top 10 features. This indi-
cates that amino acid factor features play the most important 
role for inter-chain disulfide bond prediction. Previous study 
has demonstrated that inter-chain disulfide bond is more sus-
ceptible to reduction than intra-chain disulfide bond [48], 
which may be mediated by the physicochemical properties of 
the residues surrounding the disulfide bonding sites. The 
disorder score at site 6, which was not in the optimal feature 
set of intra-chain disulfide bond, has an index of 4 in the 
inter-chain disulfide bond optimal feature set, indicating that 
it functions differently in inter- and intra-chain disulfide 
bond determination. 
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Figure 4. Distribution of the amino acid factor features in the optimal feature set  

(A) Feature-specific distribution of the features of the optimized amino acid factors for inter-chain disulfide bond prediction. Secondary struc-

ture and molecular volume play the most important role in disulfide bond determination. Codon diversity and polarity play the second most 

important role in disulfide bond determination. Electrostatic charge plays relatively less important role. (B) Site-specific distribution of the 

optimized amino acid factor features for inter-chain disulfide bond prediction. Amino acid factor features at site 4 and site 6 play the most 

important role in disulfide bond determination. The remaining 6 sites play less important role in disulfide bond determination. (C) Feature-

specific distribution of the optimized amino acid factor features for intra-chain disulfide bond prediction. Secondary structure features play 

the most important role in intra-chain disulfide bond determination. Electrostatic charge and codon diversity features play the second most 

important role in intra-chain disulfide bond determination. Polarity and molecular volume features play relatively less important role in intra-

chain disulfide bond determination. (D) Site-specific distribution of the optimized amino acid factor features for intra-chain disulfide bond 

prediction. Amino acid factor features at site 4 play the most important role in intra-chain disulfide bond determination. The amino acid factor 

features at the remaining sites play relatively less important role in intra-chain disulfide bond determination. 
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3.8.2. Intra-chain Disulfide Bonds 

 For intra-chain disulfide bond prediction, we can see that 
within the top 20 features, there are 19 PSSM conservation 
features and 1 sequence distance feature. This indicates that 
the conservation status is the most important feature for in-
tra-chain disulfide bond prediction. Previous study had 
shown that bound cysteines are significantly more conserved 
than unbound one [49]. The correlated mutation patterns of 
cysteine pairs forming disulfide bond had also been illus-
trated by [15]. The sequence distance between paired cys-
teine has an index of 2, indicating that it is an important fea-
ture for intra-chain disulfide bond prediction, which is con-
sistent with a previous study [14]. 

3.8.3. Comparison of the Top Features between Inter- and 

Intra-chain Disulfide Bonds 

 Comparing the top features between inter- and intra-
chain disulfide bonds, we can see that differences exist in the 
prediction mechanisms between inter- and intra-chain disul-
fide bond predictions. Within the top 10 features (shown in 
Table 1) for inter-chain disulfide bond prediction, there were 
5 amino acid factor, 4 PSSM conservation, and 1 disorder 
features. While within the top 20 features (shown in Table 2) 
for intra-chain disulfide bond prediction, there were 19 
PSSM conservation and 1 distance features. This may sug-
gest that PSSM conservation and sequence distance played 
the most important roles in intra-chain disulfide bond deter-
mination, while amino acid factor and disorder features 
played more important roles in inter-chain disulfide bond 
determination than in intra-chain disulfide bond determina-
tion.  

4. COMPARISONS WITH EXISTING METHODS US-
ING INDEPENDENT TEST DATASET 

 We input the independent test data set into our prediction 
method. For inter-chain disulfide bonds, the prediction accu-
racies for positive, negative and total samples are 0.5556, 
0.9065 and 0.8996 respectively. For intra-chain disulfide 

bonds, the prediction accuracies for positive, negative and 
total samples are 0.7151, 0.9028 and 0.8912 respectively. 

 We input the independent test data set for intra-chain 
disulfide prediction into DiANNA [17], a computational 
method to classify cysteines into reduced, half-cysteine or 
ligand-bound state using a support vector machine with spec-
trum kernel. By excluding 13 positive samples and 3175 
negative samples in two protein sequences P78504 and 
Q14766, which cannot be predicted by DiANNA, we got 
totally 682 positive samples and 7343 negative samples. The 
prediction accuracies for positive, negative and total samples 
are 32.26%, 93.35% and 88.16% respectively. The results 
demonstrated that the prediction accuracy of our method is 
much better than DiANNA for positive samples, and slightly 
better than DiANNA for the overall samples.  

5. CONCLUSION 

 In this study, we developed a new computational method 
for inter- and intra-chain disulfide bond prediction based on 
maximum relevance minimum redundancy (mRMR) method 
followed by incremental feature selection (IFS), with nearest 
neighbor algorithm as its prediction model. We used se-
quence conservation, residual disorder, and amino acid factor 
as features for inter-chain disulfide bond prediction, and be-
sides these features, the sequence distance between each pair 
of cysteines is also used for intra-chain disulfide bond pre-
diction. Our approach achieved a prediction accuracy of 
0.8702 for inter-chain disulfide bond prediction using 128 
features and 0.9219 for intra-chain disulfide bond prediction 
using 261 features. Optimal feature set analysis demon-
strated that different types of features contributed differently 
to disulfide bond formation and features at the center and 
two distal sites contributed more to the disulfide bond forma-
tion than other sites. Comparison of optimal feature sets and 
top features revealed the similarities and differences between 
inter- and intra-chain disulfide bonds, which might help un-
derstand more of the mechanism of forming the disulfide 
bonds and provide clues for researches in this research field. 

Table 1. Top 10 Features in the Optimal Feature Set for Inter-chain Disulfide Bond Prediction 

Order Name Feature Type Site Sub Feature Type 

1  pssm5.12  PSSM 5 K 

2  aai2.3  Amino acid factor 2 Molecular volume 

3  aai4.2  Amino acid factor 4 Secondary structure 

4  dis6  disorder 6 disorder 

5  aai3.4  Amino acid factor 3 Codon diversity 

6  pssm4.14  PSSM 4 F 

7  aai1.5  Amino acid factor 1 Electrostatic charge 

8  pssm5.13  PSSM 5 M 

9  aai6.1  Amino acid factor 6 polarity 

10  pssm8.3  PSSM 8 N 
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