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Abstract Growth in population, decrease in arable land area, and change in climate are endangering our food

security. Precision agriculture has the potential to increase crop productivity thorough tailored agricultural

practices for different growing areas. Many models of crops and agro-ecosystems capable of predicting interaction

between plants and environments have been developed for precision agriculture. Currently, there are several

representative categories of crop and agro-ecosystem models, including the de Wit school models, the DSSAT

series models and the APSIM series models, which have contributed substantially to improvement of agricultural

practices. However, these models are weak in predicting performances of crops under environmental and genetic

perturbations are generally weak, which severely limits the application of these models in guiding precision

agriculture. We need to develop the next generation crop and agro-ecosystems models with a high level of

mechanistic basis, which can be integrated with high throughput data and can predict the heterogeneity of

environmental factors inside canopy and dynamic canopy photosynthesis. In developing such a model close

collaboration is inevitably required among scientists from different disciplines. The successful development and

application of such models will undoubtedly advance precision agriculture through providing better agronomical

practices tailored for different growing environments. These models will also form a basis to identify breeding

targets for increased productivity at given location with given soil and climatic conditions.
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1 Introduction

Ensuring food security is a key challenge facing our society. During the past few decades, the crop
yield per unit area has been dramatically increased through breeding better germplasm and improving
agricultural practices, such as better pest and weeds control, increased irrigation and fertilization, etc.
Unfortunately, though global population continues increasing, crop yield per unit area shows little, if
any, increase in the past ten years [1, 2]. There are a number of other factors endangering global food
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security, e.g., the global climate change, in particular the increased frequencies of extreme weather events
such as flooding, drought, and the increased proportion of protein-rich diet in developing countries. In
2008, a rumor about the potential shortage of rice production caused riots in many countries across the
world. Given the increased urbanization, it is also unlikely to increase crop productivity through increased
arable land area; as a result, increasing crop yield per unit land area becomes a major challenge facing
plant biologists and agronomists. Precision agriculture holds great potential to dramatically increase
crop productivity through tailoring agricultural practices and germplasms to fit the particular weather
and soil conditions in each crop growing area.

The core of precision agriculture is to manage agricultural practices, such as sowing density, fertilizer
needs, and other input parameters, based on the variability in field conditions [3], which correspondingly
heavily relies on the capacity to accurately predicting responses of crop growth and development under
different weather, soil, and other environmental conditions using models. In this paper, we first analyze
the significance of crop models in guiding improving crop yields, then we explain the status quo of crop
and agro-ecosystem modeling, and demonstrate that modern agronomy, plant biology, and computational
sciences enable development of the next generation models of crops and agro-ecosystems. Several research
areas that need to be advanced to develop the next generation models of crops and agro-ecosystems are
then briefly listed. In the end, we call for a close collaboration between scientists working in related
disciplines.

2 The next generation crop and agro-ecosystems models will play important
roles in modern precision agriculture and plant biology research

The exploration of crop and agro-ecosystem models will play important roles in helping control crop
growth and development through designing proper irrigation and fertilization practices, and correspond-
ingly in helping improve yields under different filed conditions. Crop yields not only depend on intrinsic
properties of plant growth and development, but also rely on the nonlinear interaction between plants
and external environments. For example, canopy photosynthesis, which generates material required for
the growth and development of crops, is influenced by such intrinsic properties as leaf nitrogen content,
leaf photosynthetic properties, and leaf area index, and extrinsic properties including humidity, light, and
temperature [4, 5]. Temperature influences canopy photosynthesis in a highly nonlinear manner. For ex-
ample, under low temperatures, increasing temperature increases photosynthetic rates; while under high
temperatures, increasing temperature decreases photosynthetic rates [6]. Water and light conditions also
influence photosynthesis similarly [5, 7, 8]. The influence of one environmental (stress) factor on photo-
synthesis may depend on other environmental factors. For example, under low or high temperature, or
drought conditions, leaves are more prone to photoinhibition [9]. Such nonlinearities between influences
of different factors on photosynthesis and various other crop growth and developmental processes make
it challenging to empirically select the best agricultural practices (mainly the scheduling of irrigation and
fertilizer application) for different field conditions.

Developing mechanistic models of crops and agro-ecosystems will help coordinate vegetative growth
and reproductive growth, which are also critical to gaining high crop yields. If vegetative growth is more
than necessary, the reproductive growth might be hampered due to either shortage of time, or shortage
of nutrients available for construction of the reproductive organs. In contrast, if vegetative growth is
deficient, reproductive growth will also be hampered simply due to low supply of carbohydrate from
vegetative growth [10, 11]. Developing mechanistic models of crop growth and development, which can
predict timing and duration of different development stages under different soil and weather conditions,
will be critical to coordinating vegetative and reproductive growth through selecting optimal agronomical
practices, i.e. scheduling of irrigation and fertilization scheduling based on the differential impacts of water
and nutrients on plant developmental progression [12].

Thirdly, models of crops and agro-ecosystems with a high level of mechanistic basis will help identify
breeding targets to increase crop potential yields. More and more field and theoretical evidence has
suggested that increasing crop photosynthetic energy conversion efficiency (εc), i.e. the efficiency of plant
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converting light energy into chemical energy using photosynthesis, represents a feasible and rewarding
approach to increasing potential yields [5, 13]. However, identification of potential approaches to in-
creasing εc is extremely challenging. First, more than 100 proteins are involved in various aspects of
photosynthesis [14–16]. Even if we assume that a) only 10 genes in photosynthesis are closely related to
εc; b) the activity of each enzyme or protein coded by photosynthetic gene can only be doubled or halved,
the identification of the optimal combination of genes for εc under a particular environment would require
210 transgenic experiments. Adding to this complexity, photosynthesis interacts closely with respiration,
nitrogen metabolism, water transport, etc., and can be influenced by a number of environmental factors
in a highly nonlinear way [5]. So, εc reflects the coordination of whole plant central metabolism [17].
Furthermore, plant productivity is not determined by the photosynthesis of a single leaf, but rather by
the total photosynthesis of a whole plant canopy over a whole growing season [5]. The photosynthesis
in the field is influenced by the variability of weather (light, temperature, humidity, precipitation), soil
conditions (soil type, soil water content, water table), and changes in photosynthetic physiological prop-
erties over the growing season. Given this complexity, experimental approaches to identifying targets to
engineer higher productivity are not feasible, or not economical. Mathematical modeling, combined with
optimization techniques, provides a feasible approach to tackle this challenge. In this regard, a model of
photosynthetic carbon metabolism has been developed and combined with an evolutionary algorithm to
identify engineering targets for higher photosynthetic CO2 uptake rate [5, 18].

In addition to supporting application research, the next generation models of crops and agro-ecosystems
also hold great potential in basic research of plant biology. One major feature of a highly mechanistic
model of crops and agro-ecosystems is its ability to link high throughput genomic data, e.g. genomic
sequences, RNA expression data, proteomics data, and metabolomics data, to observable macroscopic
phenotypes. Such a direct linkage makes it possible to test molecular mechanisms underlining macroscopic
phenomena, such as molecular changes responsible for adaptation of photosynthesis under different light
and CO2 conditions [19]. Such models will also help evaluate the ability of our current crop systems to
provide food, energy, and other ecosystem services in various predicted global climate change scenarios.

2.1 Representative crop and agro-ecosystem models

Many crop and agro-ecosystem models have been developed since the 1960s, which contributed substan-
tially to our understanding of the interaction of crops and environments, crop management and crop
improvements [20, 21]. Here we briefly introduce a number of representative models of crops and agro-
ecosystems. At the end of this section, the needs for further development of crop and agro-ecosystem
models are discussed.

2.1.1 School of de Wit models

Dr. de Wit of Wageningen Agricultural University started developing crop growth and development
models, usually termed “School of de Wit” models [22]. These models predict the crop potential yields,
which are further modified by the availability of water, nitrogen and nutrients. Representative models
in this series include ELECROS [23], BACROS [24, 25], SUCROS [26], WOFOST [27], MACROS [28],
LINTUL [29]. These models can be used for hypothesis testing to predict plant growth and development
under various scenarios of global climate change or altered agronomical practices.

2.1.2 DSSAT model series

The DSSAT (decision support system for agro-technology transfer) models developed specialized modules
for different crops [21] in modeling the vegetative and reproductive growth process, detailed physiological
processes including photosynthesis, respiration, photosynthate allocation, plant growth and senescence,
and also the soil nitrogen cycle. Currently, the series of models have already included modules for 16
different crop species, e.g. wheat, maize, rice, sorghum, soybean, millet, peanut, sugarcane, and cassava.
DSSAT models have also been combined with geography information systems (GIS) [30].
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2.1.3 APSIM model

APSIM (agricultural production system simulator) is an agro-ecosystem modeling platform that inte-
grates various crop models developed by Australia scientists [31]. Compared to DSSAT and school of de
Wit model series, APSIM focuses on simulating soil processes, especially the effects of different climatic
and management factors on soil processes. Another feature of APSM is its modularized design: modules
describing processes related to climate, soil, water, nutrition, and crop physiology are individually devel-
oped and used as basic building blocks for whole models. Users can assemble different modules to create
customized models that fit particular environments and crops. APSM can support crop agronomical
practice selection and soil management [31].

Besides these three model series, a number of other models also have contributed much to either basic
or applied researches in crop or agronomic sciences. In particular, the CENTURY model simulates the
dynamics of carbon, nitrogen, phosphorus and sulfur in soil [32], which has been adopted in many crop
simulation models, e.g. DSSAT models [21] and WIMOVAC [33]. So far, though these different models
have substantially contributed to agriculture and plant biology research, an accurate description of the
mechanisms underlying growth and development and the mechanisms underlying the interaction of plants
with their environments is still lacking. This severely inhibits the potential of these models to predict
responses of plant growth and development under new environments for which these models are yet to
be parameterized. In the next section, we will demonstrate that the advances in plant biology make it
ready to develop the next generation models of crops and agro-ecosystems, which has improved capacity
to predict the responses of crop growth and development under environmental changes.

2.2 It is time to develop the next generation models of crops and agro-ecosystems

The mechanistic biochemical model of photosynthesis [34] has been used in many crop and agro-ecosystem
models [21, 33]. Though Farquhar model has proven extremely successful in predicting photosynthesis at
leaf and canopy levels [34], it fails to simulate the complex interactions between photosynthesis and other
plant physiological processes including respiration, nitrogen metabolism, and water movement through
the soil-root-stem-leaf-atmosphere continuum. Recent years have seen many rapid advances in molecular
mechanisms underlying interactions of photosynthesis with other physiological processes, e.g. photosyn-
thesis and respiration [7, 17, 35], photosynthesis and nitrogen metabolism [36], photosynthesis, stomatal
conductance and leaf water status [37], which forms the basis to develop new models to simulate the in-
teraction between these different metabolic and physiological processes. Well-established algorithms for
developing mechanistic models of plant metabolism have already been used to develop various metabolic
models [5, 18, 38].

In addition to the close linkeage between different metabolic processes, the expression of key enzymes
involved in different metabolic processes is constantly adjusted or regulated in responses to various envi-
ronments. For example, sugars, in particular sucrose and glucose, regulate expression of photosynthetic
genes [39–41]. The carbon and nitrogen metabolisms closely interact and regulate each other [42, 43].
The molecular mechanisms underlying crop flowering timing [44] and molecular mechanisms underlying
the leaf shape and size [45] have also been gradually revealed. But, how to integrate these molecular
mechanisms into models of crops and agro-ecosystem? One approach is directly linking quantitative
trait loci (QTL) to model parameters [46–48], as already used in the model of flowering timing [46] and
the model of leaf growth and expansion [48]. Another approach is to directly develop models of genetic
regulatory network related to metabolism and development. This approach, however, still needs a long
time to show its feasibility. This is because though many bioinformatics algorithms have been developed
to construct genetic regulatory network [49–58], the accuracy of these identified networks still needs sub-
stantial experimental validation. Minimally, however, these algorithms and the availability of massive
amount of high throughput data make it possible to develop models of genetic regulatory network.

As discussed earlier, crop yields are more closely related to more than leaf photosynthesis, canopy
photosynthesis, which are influenced by a number of environmental factors, including light, humidity,
and temperature [59]. More and more experimental evidence and modern cultivars have demonstrated
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that canopy architecture influences canopy photosynthesis and crop yields [60], very possibly due to
its influence on environmental factors, especially light distribution inside canopy [5, 60]. To accurately
estimate canopy photosynthesis, accurate information of these environmental factors around each leaf in
the canopy is required. In the field, obtaining environmental parameters for different leaves is extremely
challenging due to high level of temporal and spatial heterogeneities in these different factors [4, 59,
61, 62]. In this regard, three-dimensional models of plant architecture in trees [63] and maize [64]
have already been developed. Specialized measurement techniques to digitize the three-dimensional
canopy architecture, e.g. fastSCAN (Polhemus Incorporation, http://www.polhemus.com), have also
been developed in recent years; all these advances help develop more advanced canopy photosynthesis
models with detailed and more realistic representation of the three-dimensional canopy architecture.

Besides canopy photosynthesis, another crucial factor influencing crop yields is the source sink interac-
tion. For many grain crops, such as rice, maize, and wheat, leaf and grain are the main source and sink
organs respectively. The transport of photosynthate from source to sink tissues goes through vascular
bundles. Admittedly, though the interaction between source and sink has been studied for many decades,
our understanding of the molecular mechanism behind regulation of the source sink interaction is still
rather limited [65, 66]. But, many important empirical observations have been made, e.g. a) source
activities, representing the total photosynthetic CO2 uptake rates, are mainly influenced by not only
canopy architecture, but also activities of many enzymes and proteins involved in photosynthesis, includ-
ing Rubisco, SBPase (sedoheptulose-1,7-bisphosphatase), FBPase (fructose-1,6-bisphosphatase) [16, 18];
b) the sink capacity is mainly affected by the activity of key enzymes associated with starch synthesis and
sucrose synthesis, including sucrose synthase, ADP-glucose pyrophosphorylase, starch synthase, starch
branching enzyme and starch debranching enzymes [18, 67, 68]; c) hormone influences sink activities, as
shown in rice grain filling [69, 70]. Sugar levels control expression of genes involved in photosynthetic,
nitrogen metabolism, sucrose and starch metabolism [71, 72], correspondingly plays an important role in
regulating source and sink interaction. Again, though our understanding of the molecular mechanisms
underlying source sink interaction and also means for partitioning of photosynthate into different organs
are still far from complete, the recent advances regarding regulation of genes involved in source and sink
capacities need to be incorporated into existing models of crop and agro-ecosystems.

3 Components of the next generation models for crops and agro-ecosystems

Given the needs and feasibility of developing improved models with more mechanistic basis, we suggest
a number of research areas to expediate generation of the next generation models of crops and agro-
ecosystems.

First, a number of core models need to be developed (Figure 1). These models include: a) models
of plant central metabolism and its regulation, models of flowering timing, and models of source sink
interaction; b) models of microclimatic factors inside three-dimensional canopies, which can predict light,
CO2, temperature, humidity and ozone conditions in the canopy and, in the long run, simulate the
influence of mechanical forces on canopy architecture and correspondingly on microclimatic conditions; c)
models of nitrogen and water movements through the soil-root-stem-leaf-atmosphere continuum; models
simulating soil nitrogen, carbon and phosphorus cycles also need to be further improved; d) models of
organ (leaf, flower, and root) formation.

Secondly, to facilitate application of these models in new crop design and quantitative studies of
plant molecular and physiological processes, a number of methods (Figure 2) are needed, which include:
a) methods to identify breeding targets for particular crops under a given environment; b) methods to
identify molecular basis for a macroscopic phenotype; c) methods for model analysis, including sensitivity
analysis, parameter estimation and bifurcation analysis.

Finally, to maximize the application of models in research and education, supporting databases and
online portals specifically tailored for the next generation models of crops and agro-ecosystems are also
needed.



594 Zhu X G, et al. Sci China Inf Sci March 2011 Vol. 54 No. 3

Figure 1 Diagram showing processes involved in a plant used in the next generation models of crops and agro-ecosystems.

The models will simulate the central metabolism including photosynthesis, respiration, nitrogen transport, assimilation and

partitioning, water uptake, transport and evaporation, interaction among these different processes, and also interaction of

these processes with environments. The next generation models of crops and agro-ecosystems will also simulate the growth

and development process of crops.

4 Summary

With the global population increase, climate change, and decrease in arable areas, identifying new ap-
proaches to increase crop productivity is one critical challenge facing our society. Developing the next
generation of crop and agro-ecosystem models will not only help us identify better farming practices
and breeding targets for increased productivity, but also help study mechanistic basis behind observable
macroscopic phenotypes, and predict responses of plants or crops to future climate change. The next
generation crop and agro-ecosystem models will incorporate recent advances of mechanisms underlying
many aspects of crop growth and development, and interactions between plants and their environments.
Developing the next generation crop and agro-ecosystem models requires close collaboration between sci-
entists in different disciplines including but not limited to agronomy, mathematics, information sciences,
plant sciences, earth sciences, geology sciences and even social sciences. It is foreseeable that once such
models are developed, they will play an important guiding role in precision agriculture, where the bottle-
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Figure 2 Major components of the next generation models of crops and agro-ecosystems. These models include models of

the plant central metabolism and regulation, models of crop eco-physiology, physical and chemical models of soil processes

and the environmental processes. These models will be directly linked to high throughput data, data about crop physiology,

crop growth and development, and climatic data. To effectively use the models to identify better farming practices, targets

for crop improvements, and to explore systems properties, tailored algorithms for optimization, sensitivity analysis, model

reduction and visualization will be developed.

neck is indeed the lack of robust models of interaction of plants with their environments.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 30970213), and the

Young Talent Frontier Program of Shanghai Institutes for Biology Sciences/Chinese Academy of Sciences (Grant

No. 09Y1C11501). The authors thank Steve Long, Don Ort, Eric Sturler for collaborations.

References

1 Conway G, Toenniessen G. Feeding the world in the twenty-first century. Nature, 1999, 402: C55–C58

2 Peng S B, Tang Q, Zou Y. Current status and challenges of rice production in China. Plant Prod Sci, 2009, 12: 3–8

3 Stafford J V. Implementing precision agriculture in the 21st century. J Agr Eng Res, 2002, 76: 267–275

4 Niinemets U L O. Photosynthesis and resource distribution through plant canopies. Plant Cell Environ, 2007, 30:

1052–1071

5 Zhu X G, Long S P, Ort D R. Improving photosynthetic efficiency for greater yield. Ann Rev Plant Biol, 2010, 61:

235–261

6 Sage R F, Kubien D S. The temperature response of C3 and C4 photosynthesis. Plant Cell Environ, 2007, 30: 1086–1106

7 Atkin O K, Macherel D. The crucial role of plant mitochondria in orchestrating drought tolerance. Ann Bot, 2009, 103:

581–597

8 Cornic G, Fresneau C. Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for

photosystem II activity during a mild drought. Ann Bot, 2002, 89: 887–894

9 Long S P, Humphries S W, Falkowski P G. Photoinhibition of photosynthesis in nature. Ann Rev Plant Physiol Plant

Mol Biol, 1994, 45: 633–662

10 Slafer G A. Genetic basis of yield as viewed from a crop physiologist’s perspective. Ann Appl Biol, 2003, 142: 117–128

11 Murchie E H, Pinto M, Horton P. Agriculture and the new challenges for photosynthesis research. New Phytol, 2008,

181: 532–552

12 Gibson S. Control of plant development and gene expression by sugar signaling. Cur Opin Plant Sci, 2005, 8: 93–102

13 Zhu X G, Long S P, Ort D R. What is the maximum efficiency with which photosynthesis can convert solar energy into

biomass? Current Opin Biotech, 2008, 19: 153–159

14 Cramer W A, Zhang H M, Yan J S, et al. Transmembrane traffic in the cytochrome b6f complex. Ann Rev Biochem,

2006, 75: 769–790

15 Nelson N, Yocum C F. Structure and function of photosystems I and II. Ann Rev Plant Biol, 2006, 57: 521–565



596 Zhu X G, et al. Sci China Inf Sci March 2011 Vol. 54 No. 3

16 Raines C A. The calvin cycle revisited. Photosyn Res, 2003, 75: 1–10

17 Lawlor D W, Tezara W. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a

critical evaluation of mechanisms and integration of processes. Ann Bot, 2009, 103: 561–579

18 Zhu X G, De Sturler E, Long S P. Optimizing the distribution of resources between enzymes of carbon metabolism can

dramatically increase photosynthetic rate: A numerical simulation using an evolutionary algorithm. Plant Physiol, 2007,

145: 513–526

19 Rogers A, Humphries S W. A mechanistic evaluation of photosynthetic acclimation at elevated CO2. Glob Change Biol,

2000, 6: 1005–1011

20 Lin Z H, Mo X G, Xiang Y Q. Research advances on crop growth models. Acta Agron Sin, 2003, 29: 750–758

21 Jones J W, Hoogenboom G, Porter C H, et al. The DSSAT cropping system model. Europ J Agron, 2003, 18: 235–265

22 Bouman B A M, Van Keulen H, Van Laar H H, et al. The ‘School of de Wit’ crop growth simulation models: a pedigree

and historical overview. Agri Syst, 1996, 52: 171–198

23 de Wit C T, Penning de Vries F W T. The simulation of photosynthetic systems. In: Prediction and Management of

Photosynthetic Productivity, Proceedings of the International Biological Program/Plant Production Technical Meeting.

Wageningen, 1970. 47–70

24 de Wit C T. Simulation of assimilation, respiration and transpiration of crops. Simul Monographs, 1978

25 Penning de Vries F W T, Laar H H. Simulation of plant growth and crop production.In: PUDOC, Wageningen, 1982,

1–308

26 Van Keulen H, Penning de Vries F W T, Drees E M. A summary model for crop growth. In: Penning de Vries F W T,

van Laar H H, eds. Simulation of Plant Growth and Crop Production. Simulation Monograph, PUDOC, Wageningen,

1982. 87–98

27 Keulen H, Wolf J. Modelling of agricultural production: weather, soils and crops. In: PUDOC, Wageningen, 1986, 1–478

28 Penning de Vries F W T, Jansen D M, M. Ten Berge H F M, et al. Simulation of ecophysiological processes of growth

in several annual crops. In: Simulation Monograph, PUDOC, Wageningen, 1989. 1–280

29 Spitters C J T, Schapendonk A. Evaluation of breeding strategies for drought tolerance in potato by means of crop

growth simulation. Plant Soil, 1990, 123: 193–203

30 Lal H, Hoogenboom G, Calixte J P, et al. Using crop simulation modles and GIS for regional productivity analysis.

Trans ASABE, 1993, 36: 175–184

31 Mccown R L, Hammer G L, Hargreaves J N G, et al. APSIM: a novel software system for model development, model

testing and simulation in agricultural systems research. Agr Syst, 1996, 50: 255–271

32 Parton W J, Stewart J W B, Cole C V. Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry, 1988,

5: 109–131

33 Humphries S W, Long S P. WIMOVAC: a software package for modelling the dynamics of plant leaf and canopy

photosynthesis. Comput Appl Biosci, 1995, 11: 361–371

34 Farquhar G D, Von Caemmerer S, Berry J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3

species. Planta, 1980, 149: 78–90

35 Lawlor D W, Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in

higher plants. Plant Cell Environ, 2002, 25: 275–294

36 Stitt M, Krapp A. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and

molecular background. Plant Cell Environ, 1999, 22: 583–621

37 Buckley T N, Mott K A, Farquhar G D. A hydromechanical and biochemical model of stomatal conductance. Plant Cell

Environ, 2003, 26: 1767–1785

38 Morgan J A, Rhodes D. Mathematical modeling of plant metabolic pathways. Metabol Eng, 2002, 4: 80–89

39 Rolland F, Baena-Gonzalez E, Sheen J. Sugar sensing and signaling in plants: conserved and novel mechanisms. Ann

Rev Plant Biol, 2006, 57: 675–709

40 Rolland F, Moore B, Sheen J. Sugar sensing and signaling in plants. Plant Cell, 2002, 14: S185–205

41 Rolland F, Sheen J. Sugar sensing and signalling networks in plants. Biochem Soc Trans, 2005, 33: 269–271

42 Stitt M, Muller C, Matt P, et al. Steps towards an integrated view of nitrogen metabolism. J Exp Bot, 2002, 53: 959–970

43 Scheible W R, Lauerer M, Schulze E D, et al. Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root

allocation in tobacco. Plant J, 1997, 11: 671–691

44 Yin X Y, Struik P C, Van Eeuwijk F A, et al. QTL analysis and QTL-based prediction of flowering phenology in

recombinant inbred lines of barley. J Exp Bot, 2005, 56: 967–976

45 Tsukaya H. Mechanisms of leaf shape determination. Ann Rev Plant Biol, 2006, 57: 477–496

46 Yin X Y, Struik P C, Tang J J, et al. Model analysis of flowering phenology in recombinant inbred lines of barley. J

Exp Bot, 2005, 56: 959–965

47 Yin X Y, Struik P C, Kropff M J. Role of crop physiology in predicting gene-to-phenotype relationships. Trends Plant

Sci, 2004, 9: 426–432



Zhu X G, et al. Sci China Inf Sci March 2011 Vol. 54 No. 3 597

48 Yin X Y, Al E. Coupling estimated effects of QTLs for physiological traits to a crop growth model: predicting yield

variation among recombinant inbred lines in barley. Heredity, 2000, 85: 539–549

49 Bailey T L, Elkan C. Unsupervised learning of multiple motifs in biopolymers using expectation maximization. Mach

Learn, 1995, 21: 51–80

50 Lawrence C E, Altschul S F, Boguski M S, et al. Detecting subtle sequence signals–A Gibbs sampling strategy for

multiple alignment. Science, 1993, 262: 208–214

51 Siddharthan R, Siggia E D, Van Nimwegen E. PhyloGibbs: A Gibbs sampling motif finder that incorporates phylogeny.

Plos Comput Biol, 2005, 1: 534–556

52 Friedman N, Linial M, Nachman I, et al. Using Bayesian networks to analyze expression data. J Comput Biol, 2000, 7:

601–620

53 Segal E, Yelensky R, Koller D. Genome-wide discovery of transcriptional modules from DNA sequence and gene expres-

sion. Bioinformatics, 2003, 19 Suppl.: i273–i282

54 Segal E, Shapira M, Regev A, et al. Module networks: identifying regulatory modules and their condition-specific

regulators from gene expression data. Nat Genet, 2003, 34: 166–176

55 Lee T I, Rinaldi N J, Robert F, et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science, 2002,

298: 799–804

56 Bar-Joseph Z, Gerber G K, Lee T I, et al. Computational discovery of gene modules and regulatory networks. Nat

Biotech, 2003, 21: 1337–1342

57 Harbison C T, Gordon D B, Lee T I, et al. Transcriptional regulatory code of a eukaryotic genome. Nature, 2004, 431:

99–104

58 Jin V X, Rabinovich A, Squazzo S L, et al. A computational genomics approach to identify cis-regulatory modules from

chromatin immunoprecipitation microarray data–A case study using E2F1. Genome Res, 2006, 16: 1585–1595

59 Niinemets U, Valladares F. Photosynthetic acclimation to simultaneous and interacting environmental stresses along

natural light gradients: Optimality and constraints. Plant Biol, 2004, 6: 254–268

60 Long S P, Zhu X G, Naidu S L, et al. Can improvement in photosynthesis increase crop yields? Plant Cell Environ,

2006, 29: 315–330

61 Leakey A D B, Scholes J D, Press M C. Physiological and ecological significance of sunflecks for dipterocarp seedlings.

J Exp Bot, 2005, 56: 469–482

62 Pearcy R W, Roden J S, Gamon J A. Sunfleck dynamics in relation to canopy structure in a soybean (Glycine max (L.)

Merr) canopy. Agr Forest Meteorol, 1990, 52: 359–372

63 Pearcy R W, Yang W M. A three-dimensional crown architecture model for assessment of light capture and carbon gain

by understory plants. Oecologia, 1996, 108: 1–12

64 Espana M L, Baret F, Aries F, et al. Modeling maize canopy 3D architecture—Application to reflectance simulation.

Ecol Model, 1999, 122: 25–43

65 Fischer R A. Understanding the physiological basis of yield potential in wheat. J Agr Sci, 2007, 145: 99–113

66 Reynolds M, Calderini D, Condon A, et al. Association of source/sink traits with yield, biomass and radiation use

efficiency among random sister lines from three wheat crosses in a high-yield environment. J Agr Sci, 2007, 145: 3–16

67 Martha G J, Kay D, Alan M M. Starch synthesis in t he cereal endosperm. Curr Opin Plant Biol, 2003, 6: 215–222

68 Geigenberger P, Stitt M, Fernie A R. Metabolic control analysis and regulation of the conversion of sucrose to starch in

growing potato tubers. Plant Cell Environ, 2004, 27: 655–673

69 Clifford P E, Offler C E, Patrick J W. Growth-regulators have rapid effects on photosynthate unloading from seed coats

of phaseolus-vulgaris L. Plant Physiol, 1986, 80: 635–637

70 Jones R J, Brenner M L. Distribution of abscisic-acid in maize kernel during grain filling. Plant Physiol, 1987, 83:

905–909

71 Jang J C, Leon P, Zhou L, et al. Hexokinase as a sugar sensor in higher plants. Plant Cell, 1997, 9: 5–19

72 Sheen J. Feedback control of gene expression. Photosynth Res, 1994, 39: 427–438



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /ZapfDingbatsITCbyBT-Regular
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


