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hReg-CNCC reconstructs a regulatory network
in human cranial neural crest cells and annotates
variants in a developmental context
Zhanying Feng 1,2, Zhana Duren3,4, Ziyi Xiong5,6,7, Sijia Wang 8,9, Fan Liu 7,10✉,

Wing Hung Wong 4✉ & Yong Wang 1,2,9,11✉

Cranial Neural Crest Cells (CNCC) originate at the cephalic region from forebrain, midbrain

and hindbrain, migrate into the developing craniofacial region, and subsequently differentiate

into multiple cell types. The entire specification, delamination, migration, and differentiation

process is highly regulated and abnormalities during this craniofacial development cause birth

defects. To better understand the molecular networks underlying CNCC, we integrate paired

gene expression & chromatin accessibility data and reconstruct the genome-wide human

Regulatory network of CNCC (hReg-CNCC). Consensus optimization predicts high-quality

regulations and reveals the architecture of upstream, core, and downstream transcription

factors that are associated with functions of neural plate border, specification, and migration.

hReg-CNCC allows us to annotate genetic variants of human facial GWAS and disease traits

with associated cis-regulatory modules, transcription factors, and target genes. For example,

we reveal the distal and combinatorial regulation of multiple SNPs to core TF ALX1 and

associations to facial distances and cranial rare disease. In addition, hReg-CNCC connects the

DNA sequence differences in evolution, such as ultra-conserved elements and human

accelerated regions, with gene expression and phenotype. hReg-CNCC provides a valuable

resource to interpret genetic variants as early as gastrulation during embryonic development.

The network resources are available at https://github.com/AMSSwanglab/hReg-CNCC.

https://doi.org/10.1038/s42003-021-01970-0 OPEN

1 CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy
of Sciences, Beijing, China. 2 School of Mathematics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China. 3 Center for
Human Genetics, Department of Genetics and Biochemistry, Clemson University, Greenwood, SC, USA. 4Department of Statistics, Department of Biomedical
Data Science, Bio-X Program, Stanford University, Stanford, CA, USA. 5Department of Genetic Identification, Erasmus MC University Medical Center
Rotterdam, Rotterdam, Netherlands. 6 Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands. 7 CAS Key
Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China. 8 Key Laboratory of
Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences,
Shanghai, China. 9 Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China. 10 China National Center for
Bioinformation, Chinese Academy of Sciences, Beijing, China. 11 Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of
Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China. ✉email: liufan@big.ac.cn; whwong@stanford.edu; ywang@amss.ac.cn

COMMUNICATIONS BIOLOGY |           (2021) 4:442 | https://doi.org/10.1038/s42003-021-01970-0 | www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-021-01970-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-021-01970-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-021-01970-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-021-01970-0&domain=pdf
http://orcid.org/0000-0002-5727-3929
http://orcid.org/0000-0002-5727-3929
http://orcid.org/0000-0002-5727-3929
http://orcid.org/0000-0002-5727-3929
http://orcid.org/0000-0002-5727-3929
http://orcid.org/0000-0001-6961-7867
http://orcid.org/0000-0001-6961-7867
http://orcid.org/0000-0001-6961-7867
http://orcid.org/0000-0001-6961-7867
http://orcid.org/0000-0001-6961-7867
http://orcid.org/0000-0001-9241-8161
http://orcid.org/0000-0001-9241-8161
http://orcid.org/0000-0001-9241-8161
http://orcid.org/0000-0001-9241-8161
http://orcid.org/0000-0001-9241-8161
http://orcid.org/0000-0001-7466-2339
http://orcid.org/0000-0001-7466-2339
http://orcid.org/0000-0001-7466-2339
http://orcid.org/0000-0001-7466-2339
http://orcid.org/0000-0001-7466-2339
http://orcid.org/0000-0003-0695-5273
http://orcid.org/0000-0003-0695-5273
http://orcid.org/0000-0003-0695-5273
http://orcid.org/0000-0003-0695-5273
http://orcid.org/0000-0003-0695-5273
https://github.com/AMSSwanglab/hReg-CNCC
mailto:liufan@big.ac.cn
mailto:whwong@stanford.edu
mailto:ywang@amss.ac.cn
www.nature.com/commsbio
www.nature.com/commsbio


In the past decades, genome-wide association studies (GWAS)
have identified many genetic changes for human facial varia-
tions and craniofacial defects1–7. These genetic variants are

enriched in enhancers preferentially active in cranial neural crest
cells (CNCC) and embryonic craniofacial tissue2,4. CNCC is a
migratory cell population in early human craniofacial develop-
ment that gives rise to the peripheral nervous system and many
non-neural tissues such as smooth muscle cells, pigment cells of
the skin, and craniofacial bones. Thus, a synthesis of the popu-
lation genetics and developmental biology holds great promise to
understand how differences in DNA sequence alter gene regula-
tion in a specific cellular context and determine differences in
their phenotypes. In other words, understanding the gene reg-
ulation mechanism of neural crest induction, specification, and
migration will help interpret genetic variants of facial phenotype
and facial disease mechanism.

Considerable efforts have been made in non-human species to
understand the gene regulation of neural crest and found many
important regulators, regulations, and pathways. FGFs and WNT
inhibitors, Tfap2, Sox2/3 were responsible for induction and
formation of the neural plate border8–13. Foxd3, Ets1, and Snai1/2
were the neural crest specifier genes to establish neural crest
identity14. Neural crest underwent migration through EMT
program15,16, driven by WNT signal and Snai1/2. At regulatory
network level17, knockdown technology was utilized to experi-
mentally test the function of 50 genes to form a neural crest gene
regulatory network of lamprey18, which was refined by the time-
series transcriptome analysis19. Moreover, Simoes-Costa et al.20

used neural-specific enhancer to isolate pure neural crest sub-
population and knocked down the neural plate border genes and
early neural crest specifier genes to construct a gene regulatory
network of neural crest.

However, the existing regulatory network studies were per-
formed in non-human species and far from complete. Most
importantly, they ignored the important role of cis-regulatory
elements (REs), in which genetic variants located and altered
regulation. For a better understanding of how genetic variants
affect human craniofacial traits and diseases, a genome-wide
regulatory network with non-coding REs for the human neural
crest is in pressing need. Timely, Prescott, et al. performed epi-
genomic profiling for the iPSC induced human CNCC21 to study
facial enhancers. Wilderman et al.22 profiled multiple histone
markers of chromatin activity as comprehensive functional
genomics data and predicted chromatin states for 4.5–8 post-
conception weeks of early human craniofacial development.
These multi-omics data make inferring a comprehensive human
regulatory network of cranial crest cell computationally a
possible task.

Recently, we demonstrated that paired expression and chro-
matin accessibility (PECA) data modeling can provide a detailed
view of how trans- and cis-REs work together to affect gene
expression in a context-specific manner23. PECA was successfully
applied to identify the master regulator in stem cell
differentiation24 and interpret RE for non-model organism25.
PECA2 further extended PECA by removing the requirement of
paired data from a diverse panel of cell types, so that inference of
context-specific regulatory network was possible from paired data
on just one sample. PECA2 has been used to reveal causal reg-
ulations for time course data26. Here, we started from PECA2 to
integrate paired RNA-seq and ATAC-seq data and constructed a
human Regulatory network of Cranial Neural Crest Cell (hReg-
CNCC) by a consensus optimization model, which was proposed
to integrate the multiple replicate data, leverage the biological and
technical replicates, and obtain a high-quality network. This high-
quality hReg-CNCC outperformed single, union, and intersection
networks, was validated by the known CNCC pathways, and

revealed regulatory architecture for CNCC development. hReg-
CNCC allowed us to better interpret findings on human facial
variation such as various facial traits in GWAS Catalog, and
cranial rare diseases. Further annotating evolutionary sequences
with associated REs, transcription factors (TFs), and target genes
(TGs) of hReg-CNCC also revealed important biological insights.
These results demonstrated the capacity of hReg-CNCC in
revealing the mechanisms underlying the genetic association
observed for human craniofacial traits.

Results
Consensus optimization infers higher quality hReg-CNCC.
High-quality hReg-CNCC was constructed based on a two-step
framework (Fig. 1). In the first step, we collected paired RNA-seq
and ATAC-seq data from (Prescott, et al.)21 and applied PECA226

to R replicates (R ¼ 6, samples were matched at the cell type level,
Supplementary Data 1) to obtain R context-specific regulatory
networks (Methods). We defined cis-regulatory modules (CRM)
associated with a TF-TG pair as a set of REs bound by TF to
regulate TG. Then each network was pooled by TF-CRM-TG
triplets with TF-TG regulatory strength (Sr , r ¼ 1; 2; ¼ ;R) and
CRM (Cr , r ¼ 1; 2; ¼ ;R). In the second step, we developed a
consensus optimization model to integrate the R regulatory net-
works (Sr and Cr) and obtained hReg-CNCC with reliable reg-
ulatory strength S and reproducible CRMs C (Methods).

We validated hReg-CNCC using independent datasets from
three different perspectives. Firstly, we collected the known
CNCC pathways17, including three CNCC functional modules
and 95 regulations among 50 genes from non-human organisms,
to assess our predicted TF-TG regulations. Genome-wide hReg-
CNCC predicted 838,220 regulations among 450 TFs, 15,686 REs,
and 7270 TGs. hReg-CNCC predicted 703 regulations among the
50 genes of CNCC pathway and 36 were in the known CNCC
pathways. This gave recall rate 38%, precision rate 5.1%, and 0.09
F1 score. To test the robustness over parameter choices, we
compared 6 hReg-CNCC versions (with different parameters in
consensus optimization) with 6 single replicate inferred networks.
hReg-CNCC obtained significantly higher values for precision (t-
test P-value 4:6 ´ 10�3), recall (t-test P-value 6:3 ´ 10�3), and
F1 score (t-test P-value 2:1 ´ 10�3) (Fig. 2a). This demonstrated
that our consensus optimization indeed handled the hetero-
geneity among replicates, integrated the varieties, and was robust
to parameter choices. We used the highest F1 score to select the
final consensus regulatory network hReg-CNCC from different
parameters (Supplementary Fig. 1a, b, c), which was used in the
following analysis. Next, we compared our consensus optimiza-
tion with two naïve integration methods, i.e., union and
intersection (Methods). hReg-CNCC showed better precision
than union and intersection networks by 0.6% and 1.2%. For
recall rate, hReg-CNCC achieved a delicate tradeoff between
union network (about 50% recall with the largest coverage) and
intersection network (about 10% recall), by greatly improving
coverage while avoiding many false positives. As expected, hReg-
CNCC achieved the best F1 score (Fig. 2b). Furthermore, we
separated the three CNCC functional modules in CNCC path-
ways respectively and found hReg-CNCC covered more than half
of known regulations. The coverage came to nearly 60% for
“neural crest specification” and “neural crest migration” (Supple-
mentary Fig. 1d). Then we collected another gene regulatory
network as the gold standard for parallel validation, which was
built with multi-omics data in chick27. We reached the same
conclusion as with CNCC pathway: hReg-CNCC was significantly
better than single networks for precision, recall, and F1 score
(Supplementary Fig. 1e). Compared with the overlapping and
union method, hReg-CNCC obtained the best precision, with a
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trade-off of recall. And hReg-CNCC performed best for F1 score
(Supplementary Fig. 1f), which again showed hReg-CNCC was
the best among the three methods.

Secondly, we used CNCC’s context-specific ChIP-seq binding
data21 for master regulators to validate our TF-CRM regulations
in hReg-CNCC. We processed the ChIP-seq data of TFAP2A and
NR2F1 and treated them as the gold standard to examine their
predicted binding sites. In total there was 11,515 REs predicted to
be bound by TFAP2A in hReg-CNCC and 80% of those REs
overlapped with TFAP2A’s ChIP-seq peaks. This outperformed
single networks with average precision of 0.76 and again
demonstrated the advantage of integrating replicates (Fig. 2c).
For NR2F1, there were 10,636 binding REs in hReg-CNCC and
the precision was 0.57, which also outperformed the average
precision for single networks 0.53 (Fig. 2c). Taken together, hReg-
CNCC provided accurate TF binding predictions.

Thirdly, we tested the accuracy of our CRM-TG regulations in
hReg-CNCC by TG’s expression. We utilized the linkages
between human biased enhancers21 and human biasedly
expressed genes as gold standard positives. For these human
biased enhancers, hReg-CNCC predicted 216 genes as their TGs,
of which 45 genes were human biasedly expressed genes. This
gave a fold change enrichment 2.31 (Methods). We compared
with Activity-By-Contact (ABC) model28 and proximity-based
method, which assigns the nearest TSS as TG (Methods). For
ABC model, there were 260 genes that were predicted to be
regulated by human biased enhancers and 38 of them were
human biasedly expressed genes, which gave the fold change 1.60.
For the proximity-based method, there were 1445 nearest genes
linked to these human biased enhancers and 214 genes of them

were human biasedly expressed genes, which gave the fold change
1.62 (Fig. 2d). These results showed hReg-CNCC was more
accurate to assign correct TGs for REs. Importantly, 15 hReg-
CNCC predicted human biasedly expressed genes (33%) were
regulated by distal enhancers and cannot be correctly predicted
by ABC model or proximity-based method (Fig. 2e). For example,
ROBO3, which confineed early neural crest cells to the ventral
migratory pathway in the trunk29 and regulateed the production
of CNCCs30, was predicted as the true TG of a distal human
biased enhancer, which was located near HEPACAM and far from
ROBO3’s gene body (Fig. 2f). This distal human biased enhancer
was validated by human-specific ATAC-seq and H3K27ac ChIP-
seq signals and was consistent with the human specific expression
pattern of ROBO3 (FPKM 2.50 in human and 0.71 in
chimpanzee, Fig. 2f). Though this human biased enhancer was
nearest to HEPACAM, it was not associated with HEPACAM
since HEPACAM was not expressed in human CNCC (FPKM
0.08). In addition, there were some CRM-TG regulations in hReg-
CNCC that can be validated by Capture-C assay. For example,
two REs were predicted by hReg-CNCC to regulate SOX9. One
RE was located on SOX9’s promoter and the other RE was located
at the 45k downstream of SOX9. It was noted that the distal RE
and SOX9 were linked by a loop of Capture-C data (Fig. 2g). As a
comparison, the ABC model predicted 6 REs to regulate SOX9
and only one of them can be validated by loops of Capture-C
(Fig. 2g). This again shows the outperformance of hReg-CNCC to
predict CRM-TG regulation.

Taken together, these results showed that our hReg-CNCC was
capable to provide high-quality TF-TG, TF-CRM, and CRM-TG
regulations.

Fig. 1 Schematic overview of inferring human regulatory network of CNCC (hReg-CNCC) based on paired gene expression and chromatin accessibility
data. High-quality hReg-CNCC is reconstructed by a two-step framework. Step 1: PECA2 infers context-specific regulatory networks from biological
replicates (see “Methods” for details). Specifically, R CNCC replicates, each with paired RNA-seq and ATAC-seq data, are input into PECA2 and output R
regulatory networks. We defined the CRM associated with TF - TG pair as a set of REs bound by TF to regulate TG. Each network is denoted by TF-TG
regulatory strength (Sr , r ¼ 1; 2; ¼ ; R) and CRM (Cr , r ¼ 1; 2; ¼ ; R), i.e., the TF-CRM-TG triplets. Step 2: Consensus optimization integrates R regulatory
networks (Sr and Cr) and outputs hReg-CNCC with reliable regulatory strength S and reproducible CRMs C. hReg-CNCC serves as a valuable resource to
interpret genetic variants from face GWAS, comparative genomics, and disease studies.
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hReg-CNCC reveals CNCC’s regulatory architecture and core
regulators. After establishing that hReg-CNCC provided high-
quality TF-TG, TF-CRM, and CRM-TG regulations, we next dis-
sected the regulatory structure of hReg-CNCC and associated with
CNCC’s functions. We firstly decomposed hReg-CNCC into
modules by hierarchical clustering on the inferred TF-TG

regulatory strength matrix. Two main regulatory modules can be
detected from hReg-CNCC and were visualized in heatmap
(Fig. 3a). We confirmed that the clustering was not driven by
motif’s trivial information content (Supplementary Fig. 2a, b).
Module 1 was composed of 32 TFs (Table 1) and 7270 genes. The
heatmap showed that those 32 TFs regulated almost all the TGs
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(Fig. 3a, Supplementary Fig. 2c). Some of these TFs were known key
regulators in CNCC pathway, such as TFAP2A/B and NR2F1/221.
Other TFs in Module 1, such as ALX family, POU family, TCF
family, and TEAD family proteins, shared a very similar regulatory
pattern as TFAP2A/B, indicating that they may also be vital in
CNCC development. Some TFs were not included in CNCC
pathway but also important for CNCC development. We labeled
them as “other CNCC TFs” (Table 1). For example, ALX1 was a
pivotal regulator of echinoderm skeletogenesis31 and associated
with traits in frontonasal face32. Module 2 was a smaller one with
71 TFs and 1,544 TGs. Functional enrichment analysis showed that
TFs in Module 2 were associated with specific biological processes
in CNCC development (Table 2, Supplementary Fig. 2d). For
example, “Mesenchyme development” was linked to neural crest
development; “Skeletal system development” was associated with
the skeleton of the face and head. SIX1 and TWIST1 in Module 2
were included in this GO term and they were top markers in tissues
of “skeletal muscle” and “mESC to chondrocyte differentiation day
7”33; “Sensory organ development” was associated with sensory
neurons in the peripheral nervous system and LEF1 in this term
was associated with “thalamus subthalamic nucleus”33; “Muscle
structure development” and “Appendage morphogenesis” may be
involved with muscle organization and ear development; Module 2
were also enriched in “heart development” and HEY2 in module 2
was one of the markers in “heart atrium”33. From these observa-
tions, we hypothesized that Module 2 were responsible for devel-
opmental and differentiation functions and those TFs’ regulations
were involved in a more specific process of CNCC (Supplementary
Fig. 2c). For example, SIX1 and SIX2 played a crucial neural crest
cell-autonomous role in frontonasal morphogenesis34; ZIC1 was
responsible for triggering the early neural crest gene regulatory
network by direct activation of multiple key neural crest specifiers35,
such as SNAI1/2, FOXD3, and TWIST1.

We further examined the relationships between the TFs in
Module 1 and TFs in Module 2. Those TFs served as the
backbone of our hReg-CNCC network and their regulation will
reveal the gene regulation architecture in CNCC. We extracted
the subnetwork with those TFs and associated CRMs. First, we
obtained a TF regulatory subnetwork, defined as the directed
graph with 103 TFs in the two modules as nodes and 10,609 TF-
TF regulatory strength as edge weights. Then we extracted its
backbone as the dense subnetwork with the maximal node and
edge weights by quadratic programming (Methods). The
extracted subnetwork was significantly denser than those
randomly obtained from hReg-CNCC networks with the same
number of nodes (t-test P-value 2.79 × 10−7). The dense subnet-
work was further partitioned into (i) the core subnetwork
consisting of TFs that densely cross-regulated each other to
achieve robust maintenance of the cellular state, (ii) the upstream
subnetwork consisting of TFs that may regulate the core, and (iii)
the downstream subnetwork consisting of key TFs regulated by
the upstream and core subnetworks (Methods). The upstream

and core TFs were mainly the known master regulators such as
TFAP2A and NR2F1 (Fig. 3b). The downstream TFs contained
many CNCC developmental TFs, such as PAX335 and SIX134.
We found that this dense network nicely connected the two
modules in the regulatory structure of hReg-CNCC: all upstream
TFs and core TFs were included in Module 1 (hypergeometric test
P-value < 1.09 × 10−18) and 60% downstream TFs were contained
in Module 2 (hypergeometric test P-value < 4.49 × 10−8). Heat-
map of TF-TF regulatory strength revealed that TFs in Module 2
(downstream TF) were regulated by TFs in Module 1 (upstream
and core TF) (Fig. 3c). Thus, our hReg-CNCC network structure
analysis revealed regulatory hierarchy in CNCC, i.e., Module 1
contains TFs at higher network level that broadly regulated TFs in
Module 2 as well as further downstream TGs (Supplementary
Fig. 2c). Without using the module structure in hReg-CNCC,
we used TF sub-network of hReg-CNCC to extract the dense
subnetwork and reached very similar results (Supplementary
Fig. 2e).

The regulatory hierarchy of TFs in two modules was consistent
with known CNCC pathways17 (Fig. 3d). TFAP2A and TFAP2B
were the most upstream regulators and affected all other TFs in
the CNCC dense network. Consistently, they were associated with
all three CNCC functions. In contrast, the TFs of CNCC
pathways in Module 2, which were mostly downstream TFs in
the hierarchy, were involved in more specific functions. For
example, SMAD3 was associated with “neural plate border”; SIX1
was associated with “neural crest specification”; ZIC1, MSX1,
MYC were linked to “neural plate border” and “neural crest
specification”; and ETS1, SOX9 were linked to “neural crest
specification” and “neural crest migration”.

To evaluate the reproducibility of hReg-CNCC and its
hierarchical architecture, we built another regulatory network
(hReg-CNCC-H9) with an independent CNCC dataset36. hReg-
CNCC-H9 was based on the paired RNA-seq and ATAC-seq data
of human H9-ESC differentiated CNCC dataset36 and was
reconstructed with the same consensus optimization model of
hReg-CNCC. First, we found significant overlapping of TFs, TGs,
REs, and TF-TG regulations between hReg-CNCC and hReg-
CNCC-H9 (Fig. 3e), revealing these genes and REs were indeed
active in CNCC context. Second, we found that there were also two
modules in hReg-CNCC-H9 (Fig. 3f): TFs in the first module
broadly regulated most of the TGs and were significantly shared
with Module 1 TF of hReg-CNCC (Fig. 3g, P-value≤ 5:11 ´ 10�22);
the regulations of TFs in the second module were much more
specific and was significantly overlapped with Module 2 TFs in
hReg-CNCC (Fig. 3g, P-value≤ 1:65 ´ 10�40). This indicated that
the two-module architecture of hReg-CNCC was reproducible.
Third, we obtained the dense TF network of hReg-CNCC-H9 as we
did for hReg-CNCC. We observed a consistent hierarchy of TFs
between hReg-CNCC and hReg-CNCC-H9 (Supplementary
Fig. 2f). For example, the upstream and core TFs, which were at
a higher level of the regulatory network, were largely shared,

Fig. 2 Validating hReg-CNCC by independent data sources show that consensus optimization outperforms the alternative methods. a Consensus
optimization achieves significantly higher precision, recall, and F1 measure than single networks. The improvement is robust to parameter choices. N= 6
for single networks and N= 6 for consensus optimization. One-tailed T-test is conducted to obtain P-values. b Consensus optimization outperforms the
naive union and intersection methods in precision, recall, and F1 measure. c hReg-CNCC can better predict two master regulators’ (TFAP2A and NR2F1)
ChIP-seq binding sites than single networks. d Using human biased differentially expressed genes as the gold standard, hReg-CNCC predicts the human
biased enhancers’ target genes more accurately than ABC model and proximity-based method. e hReg-CNCC predicts 33% enhancer gene relationships as
distal regulation for human biased enhancers, which cannot be found by ABC model or proximity-based method. f RNA-seq, ATAC-seq, H3K27ac ChIP-seq
track around ROBO3. hReg-CNCC predicts ROBO3 as the target gene for a distal human biased enhancer (comparing human and chimpanzee’s ATAC-seq
tracks and H3K27ac tracks), which is located near the gene body of HEPACAM. The expression pattern of ROBO3 supports the target assignment for the
human biased enhancer (comparing human and chimpanzee’s RNA-seq tracks). g Capture-C and REs tracks around SOX9. Two REs are predicted by hReg-
CNCC to regulate SOX9. One RE is on the promoter of SOX9 and the distal RE is validated by a loop of Capture-C anchored by SOX9.
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including TFAP2A/B, ALX1/3/4, NR2F1, PRRX2, and MYCN. And
the downstream TFs of hReg-CNCC-H9 and hReg-CNCC were
also overlapped, such as TWIST1, SIX1, TCF7L1, LMX1B, and
SOX4. It was noted that hReg-CNCC and hReg-CNCC-H9 were
significantly but not fully overlapped, which may result from the
different biological material they used (iPSC for hReg-CNCC,

hESC for hReg-CNCC-H9). These results showed that the hReg-
CNCC and its hierarchical architecture was well-validated and
revealed the biological property of CNCC.

Collectively, hReg-CNCC revealed the hierarchical regulatory
architecture of CNCC. There were two main TF-TG regulatory
modules. TFs in Module 1, such as TFAP2A and NR2F137, were at
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a higher level of the regulatory network and broadly regulated
other genes. TFs in Module 2 were at a lower level and largely
regulated by TFs in Module 1. They specifically regulated CNCC’s
functions of induction, specification, and migration.

Annotating SNPs of human facial variation with hReg-CNCC.
The regulations in hReg-CNCC inferred from accessibility and
expression data may provide tools for interpretation of genetic
variants. The genetic variants in the CRMs of hReg-CNCC,
including their functional REs, TGs, and bound TFs, should be
useful in the annotation of SNPs identified by GWAS of human
facial variation traits. To demonstrate this, we extracted the
SNPs with their summary statistics from GWAS study on 78
distance phenotypes among 13 landmarks in human face2. In
total there were 495 significant SNPs with P-value < 5 ´ 10�8 and
on average there were 7 SNPs for each distance phenotype. We
firstly calculated the fold change enrichment of facial shape-
associated SNPs in hReg-CNCC’s REs, in CNCC’s ATAC-seq
peaks, and in other tissues’ peaks as control (Methods). First, we
observed FC score of all three region sets decreased when
threshold P-value ≤ 1´ 10�6 and this may result from the
insufficient number of SNPs (Fig. 4a). There were only 1762 SNP
with threshold P-value ≤ 1 ´ 10�6. This motivated us to focus the
enrichment analysis on SNPs within P-value ≤ 1 ´ 10�5. The
results showed that those facial shape-associated SNPs were much
more enriched in hReg-CNCC REs with fold enrichment 1.3
when P-value cutoff is 1 ´ 10�5 (Fig. 4a). Facial shape-associated
SNPs have moderate enrichment in CNCC peaks and no
enrichment in other tissues (Fig. 4a). And the Facial SNPs’
enrichment in hReg-NCCC were higher than the random SNP set
generated by SNPsnap38 (Supplementary Fig. 3). This again
demonstrated that hReg-CNCC greatly improved the CNCC REs’
quality by integrating TF/TG expression and enhanced replicate
reproducibility by consensus optimization.

With the global enrichment signal, we next scanned every facial
shape-associated SNPs with P-value≤ 1 ´ 10�5 in TF-CRM-TG
triplet of hReg-CNCC (no SNPs with P-value ≤ 5 ´ 10�8 were
overlapped with hReg-CNCC). For each distance phenotype, if its

SNP was located in one CRM, we linked the SNP to this TF-
CRM-TG triplet. Then we pooled all the SNP-triplet links
together and formed a SNP associated regulatory sub-network
associated with this distance phenotype (Fig. 4b). Taking all 78
distance phenotypes associated sub-networks together, we can get
the SNPs associated network for all face distance phenotypes
(Methods, Fig. 4c). This subnetwork allowed us to explore the
relationships between SNPs, regulations, and phenotypes.

In total 22 SNPs and 28 TGs were identified. The region of the
nose and mouth included more genes (15/28) and SNPs (14/22)
than other regions, which was consistent with the previous
findings that it was the most heritable region39,40. Among these
SNP associated TGs, there were 6 TFs: ALX1, CNOT3, MLLT1,
POLR2J, RUNX2, SFPQ and the other 16 genes were downstream
TGs. Literature evidence supported that mis-regulation of these
TFs was involved with a facial abnormality. For example, CNOT3
was associated with IDDSADF (an intellectual developmental
disorder with speech delay, autism, and dysmorphic facies),
which will cause abnormal facial morphosis41. SFPQ formed a
complex with TFII-I and PARP1 and regulated DYX1C1
implicated in neuronal migration and dyslexia42. RUNX2 was
known as a master TF of bone and played a role in the
development of the teeth and supporting structures43, which was
associated with the mouth region. And the SUPT3H-RUNX2
locus was reported by previous GWAS to be associated with bone
and cartilage phenotypes44. Among the 6 TFs, ALX1, and RUNX2
were involved in regulating other genes in hReg-CNCC. There
were also many SNPs and downstream TGs, such as RUVBL145,
which was also associated with the nose and mouth.

In the face SNP associated subnetwork, we found that even
though different traits at a different region of the face had
different SNPs and TGs, they shared a group of upstream TFs.
For example, TFAP2A regulated 19/28 of the TGs; NR2F1
regulated 16/28 of the TGs, and ALX3/4 regulated 22/28 of the
TGs. These TFs were in Module 1 and upstream or core TFs in
dense TF network of hReg-CNCC, which was consistent with the
CNCC’s regulatory architecture that TFs in Module 1 broadly
regulated other genes.

To find out the key CRMs in face SNP associated subnetwork,
we ranked the TF-CRM-TG triplets by their regulatory strength
(Methods) and found ALX1 was regulated by several high-
ranking CRMs (Fig. 4d). We noticed that ALX1 was the only one
Module 1 TF in face SNP associated subnetwork. In addition,
ALX1 was the core TF in a dense TF network and regulates many
Module 2 TFs. Together these evidences suggested ALX1 as the
candidate facial shape-associated gene in our annotated regula-
tory network. There were two SNPs (rs12810608, rs11609649)
associated with ALX1. SNP rs12810608 (P-value 3.30e−07) was
located in ALX1’s promoter and SNP rs11609649 (P-value 1.55e
−06) was located in a distal regulatory region (97K upstream).
The promoter and distal RE were supported by both ATAC-seq
and H3K27ac signals (Fig. 4e). Even though the distal RE and
SNP were in LRRIQ1’s gene body, they were not associated with
LRRIQ1 since it was nearly not expressed in CNCC (FPKM 0.49).

Fig. 3 Architecture of hReg-CNCC reveals the regulatory hierarchy in CNCC. a Heatmap of hReg-CNCC’s regulatory strength adjacent matrix shows two
TF-TG modules with different regulatory patterns. X-axis denotes TG and y-axis is TF. TFs in Module 1 tend to regulate a large number of TGs. TFs in
Module 2 specifically regulate a subset of TGs. b Dense network extracted from hReg-CNCC for the TFs in Module 1 and Module 2 shows a clear
hierarchical structure. TFs in Module 1 tend to be upstream and core regulators. TFs in Module 2 tend to be downstream TFs associated with CNCC’s
specific development, differentiation, and migration. The hierarchy is consistent with GO function enrichment results. c Heatmap of TF-TF regulatory
strength matrix shows a consistent two-module structure of hReg-CNCC. d Overlapping TFs in Module 1 and Module 2 with the known CNCC pathways.
Hypergeometric test is conducted to obtain the P-values. e Overlap of TFs, TGs, REs, and TF-TG regulations between hReg-CNCC-H9 and hReg-CNCC.
f Heatmap of hReg-CNCC-H9 reveals two-module architecture. g The TFs of the two modules are significantly shared by hReg-CNCC-H9 and hReg-CNCC.
A hypergeometric test is conducted to obtain the P-values.

Table 1 TFs in Module 1 are annotated as CNCC markers,
pathways and other CNCC TFs.

TFs in Module 1 Annotation

TFAP2A TFAP2B NR2F1 NR2F2 CNCC markers

TFAP2A/B TCF4 TCF3 TCF12 CNCC pathway

PRRX2 ALX4 ALX1 ALX3 Other CNCC TFs
MYCN POU3F3 POU3F1 POU2F1
ERG FLI1 SP2 ETV4
CTCF E2F2 HEYL HEY1
RXRA TEAD4 TEAD2 TEAD3
SOX11 PRRX1 SHOX2 PHOX2A
RXRB
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And the chromatin accessibility of this distal RE had 0.51 Pearson
correlation with ALX1’s expression across diverse samples
(Supplementary Fig. 4a). The above evidence demonstrated that
hReg-CNCC can accurately predict distal REs as the regulator of
ALX1. Then we sought to find out which TFs’ binding affinity
were potentially influenced by these two SNPs. We scanned motif
on these two REs with effective allele and reference allele of the
SNPs respectively and found that the binding affinity of many
motifs were changed (Fig. 4e). There was a gain of motif
“PB0186.1_Tcf3_2/Jaspar” in promoter and its associated TCF
clusters were top regulators of ALX1 (Supplementary Fig. 4b). On
the distal RE, when allele at rs11609649 was changed to the
effective allele, there were a gain of motif “PH0082.1_Irx2/Jaspar”
and a loss of motif FOXM1_1/encode. These two motifs
corresponded to IRX3 and FOXM1 respectively, which were
highly expressed in CNCC (FPKM of IRX3 68.12, FOXM1 49.03)
and played roles in development of CNCC and derivatives46,47

(Fig. 4e, Supplementary Data 2). Several lines of evidence
supported that these two SNPs were respectively located in
promoter and distal enhancer, potentially altered the regulation of
ALX1 by influencing TFs such as TCF cluster, IRX3 and FOXM1,
combinatorially tuned ALX1’s expression level, propagated the
regulatory information in hReg-CNCC network, and led to the
phenotype changes.

hReg-CNCC provided a means to extract regulatory relations
among SNPs, REs, TGs, and phenotypes. We revealed several
interesting patterns to potentially illustrate SNPs’ multi-trait
effect and cooperation. There were two patterns of multi-trait
effect: the first was that one SNP was located in a RE and this RE
regulated multiple genes. For example, rs16985457 was located in
chr19:54693360-54695240 and chr19:54693360-54695240 was
predicted to regulate CNOT3, PRPF31, and LENG1 (Fig. 4f); the
second type was one SNP, which was associated with multiple
traits, was located in a RE and this RE only regulates a gene. For
example, rs12810608 was located in chr12:85673460-85674718,
which regulates ALX1, and this SNP was associated with three
face distances: “EnR-Prn”, “EnL-Prn”, and “EnR-AlL” (Fig. 4g).
In addition, multiple SNPs cooperated in one RE and worked
together to influence the activity of RE. For instance, rs11719548
and rs11711710 were simultaneously located in chr3:12872024-

127872868 and chr3:12872024-127872868 regulated RUVBL1
(Fig. 4h).

In summary, hReg-CNCC can improve the enrichment of
facial shape-associated SNPs in CNCC and used the TFs, REs,
and TGs to help explain how genetic variants get involved in
regulation, such as ALX1. hReg-CNCC can also illustrate the
possible mechanism of SNPs’ multi-trait effect and cooperation.

hReg-CNCC holds the potential to enhance mechanism
understanding for other facial traits. Neural crest was a multi-
potent cell population that contributed to a wide variety of
derivatives by the dedicate regulations among TF, CRM, and TGs.
Possible defects in the regulation of CNCC development con-
tributed to a large percentage of congenital birth defects. This fact
motivated us to depict human facial traits’ the known genetic
variants by its TGs and regulation. In GWAS Catalog, there were
a total of 18 traits/diseases that were related to human facial
variation and we collected their significant SNPs. We found that
1/3 of these face associated traits’ significant SNPs were associated
with CRMs in hReg-CNCC (Fig. 5a). For instance, one significant
SNP rs758468472 was reported to be associated with “Tooth
agenesis” (GWAS with 340,498 participants and 9 risk variants48)
in GWAS catalog. hReg-CNCC showed that it located in
“chr17:65713670-65714238” and this RE was predicted to reg-
ulate NOL11 (Fig. 5a), which played major roles in CNCC
development49. One of the significant SNPs of “Monobrow”
(GWAS with 69,000 participants and 61 significant loci50)
rs11609649 was located in chr12:85576368-85576871, whose TG
was ALX1 and binding TFs were ALX cluster, TFAP2B/A,
POU3F3, PRRX2, and NR2F1 (Fig. 5a). Interestingly, rs11609649
and ALX1 were also detected in annotating GWAS of face dis-
tances and their related phenotypes were frontonasal distances
(Fig. 5b), indicating that these two traits may be correlated. These
results agreed with the fact that ALX1 was associated with fron-
tonasal face32 since “Monobrow” and frontonasal distances were
both characteristics of frontonasal face. Putting all the evidence
together, SNP rs11609649 was located in a distal RE (97K
upstream, chr12:85576368-85576871) and regulated ALX1. This
regulation may be influenced by SNP rs11609649 on the motif

Table 2 TFs in Module 2 are enriched in CNCC-specific developmental terms.

Function −log(P-value) Associated TFs in Module 2

Chordate embryonic
development

29.93 GABPA,LMX1B,SMAD3,MSX1,SIX1,SOX9,SP3,SRF,TCF7,TWIST1,ARNT2,SIX2,HEY2,LEF1,SIX4,ETS2,
MSX2,ZIC1,KLF4,EMX2,RFX3,BARX1

Mesenchyme development 21.28 SMAD3,MSX1,MSX2,MYC,SIX1,SOX9,TWIST1,SIX2,HEY2,LEF1,SIX4,FOXO4,NFE2L2,SRF,POU6F2,
TCF7L2

Skeletal system development 21.18 ESRRA,ETS2,SMAD3,MSX1,MSX2,SIX1,SOX9,SP3,SRF,TWIST1,SIX2,SIX4,EGR1
Tissue morphogenesis 18.91 ETV5,SMAD3,MSX1,MSX2,MYC,SIX1,SOX9,SRF,TWIST1,KLF4,SIX2,HEY2,LEF1,SIX4,EGR1,EMX2
Response to growth factor 18.49 E2F1,EGR1,ELK1,FOXO3,SMAD3,MSX1,MSX2,MYC,SOX9,TWIST1,KLF4,LEF1,ZBTB7A,FOXO4
Organ sensory development 26.85 SMAD3,MSX1,SIX1,SOX9,SP3,SRF,TWIST1,ZIC1,KLF4,SIX2,HEY2,LEF1,SIX4
Vasculature development 14.86 EGR1,ELK3,ETS1,FOXO4,NFE2L2,SIX1,SP1,SRF,TCF7L2,TWIST1,KLF4,HEY2,LEF1,FOXJ2,SMAD3,MYC,

SOX9,SIX4,MAZ,TWIST2
Ossification 14.18 ESRRA,SMAD3,MSX2,SOX9,SP3,TWIST1,SIX2,LEF1,TWIST2,HEY2
Regulation of animal organ
morphogenesis

13.78 ETV5,MSX1,MYC,SIX1,SOX9,TWIST1,SIX2,SIX4,EGR1,FOXO3,SMAD3,TCF7,TCF7L2,KLF4,LEF1,BARX1,
TCF7L1

Regulation of neuron
differentiation

12.72 ETV5,FOXO3,NFE2L2,SIX1,SOX9,SRF,KLF4,HEY2,E2F1,ETV1,LEF1,RFX3

Muscle structure development 12.01 EGR1,ETV1,SMAD3,FOXO4,MSX1,SIX1,SOX9,SRF,TCF7L2,TWIST1,HEY2,LEF1,SIX4
Appendage morphogenesis 11.87 MSX1,MSX2,SOX9,TWIST1,LEF1
Heart development 11.84 SMAD3,MSX1,MSX2,SIX1,SOX9,SRF,TWIST1,HEY2
Mesenchyme morphogenesis 11.78 SMAD3,MSX1,MSX2,MYC,SOX9,TWIST1,HEY2,LEF1

The genes with bold characters are the marker of the function in the first column.
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binding of IRF3 and FOXM1 (Fig. 4d). This mechanism was
probably responsible for both normal regulations of frontonasal
distances and abnormal phenotype “Monobrow” (Fig. 5c).

On the other hand, with known causal genes of rare diseases
manifesting facial abnormalities, we can use hReg-CNCC to

reveal their REs and regulating TFs. For example, Williams-
Beuren Syndrome (WBS), a disease with the characteristic of the
milder face, had a causal gene BAZ1B, found by sequence deletion
of WBS patients51. We used hReg-CNCC to study BAZ1B and
found there were five REs composed its upstream CRM (Fig. 5d).
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Two REs were near promoter or in the gene body and the other
three were distal REs. Among its upstream TFs, TFAP2B/A and
MYCN regulated BAZ1B through all five REs; ALX4 bound on
two of these REs. Two of these REs were linked to some SNPs of
GWAS of 78 distance2. One was located in promoter and the
other was in a cis-RE. These SNPs’ most associated distance traits
(defined as the SNP’s minimal P-value corresponded distance
trait) were face width (Fig. 5d), which was probably linked to
characters of WBS: puffiness around the eyes and full cheeks.
Taken together, BAZ1B was regulated by a CRM consisting of five
REs, bound by TFs such as TFAP2B/A, MYCN, and ALX4. These
TFs binding was probably affected by two SNPs, rs62466263 and
rs73134905, and finally exerted influence on face width and led to
milder face characteristics.

Interpreting DNA difference in evolution with hReg-CNCC.
The evolutionary elements of the human genome contributed to
many characteristics of human52, including face morphosis. It
was promising to annotate evolutionary elements with hReg-
CNCC to reveal their regulation on the face. Similar to the SNP
annotation procedure, we checked every TF-CRM-TG triplet and
if its CRM was overlapped with some human evolutionarily
important elements, it was extracted to form the annotated net-
work (Fig. 6a).

We first focused on the 481 human ultra-conserved elements
(UCEs)53, which were identical in at least three of five placental
mammals (human, dog, cow, mouse, and rat). We found five REs in
hReg-CNCC were overlapped with human UCEs (P-value < 0.0074,
Method, Fig. 6b). Among them, three elements were also candidate
enhancers in VISTA database54. And one of these three VISTA
enhancers “chr8:77690693-77691421” was positive for transgenic
mouse assay (4/4 were limb positive and 1/4 was neural tube
positive), but showing no activity in the developing facial structures
at E11.5 of the mouse embryo. Its downstream TG was ZFHX4,
which was a known causal gene for “Congenital Ptosis”55. The other
two vista enhancers were also associated with facial traits. For
example, “chr5:77148376-77148723” was linked to TBCA, a causal
gene for HRDS (Hypoparathyroidism-Retardation-Dysmorphism
Syndrome)56, which will cause facial anomalies; the downstream
gene of “chr1:244217544-244217918” was ZBTB18 and it was
associated with MRD2257, whose symptom included variable but
characteristic facial features. In the UCE associated subnetwork, we
noticed that there were two types of TFs that were consistent with
hReg-CNCC revealed 2-Module regulatory architecture. For
example, TFAP2B, ALX4, and TCF4 represented the first type of
TFs and they regulated four of the five annotated UCEs. Their
property of broad regulation in UCE network agreed with the fact
that they were in Module 1 and upstream or core TFs in a dense
network. On the other hand, TWIST1 and TFAP4 represented the
second type TFs and they only regulated one of the five annotated
UCEs, showing their feature of specific regulation. This was in

accordance with the fact that they were in Module 2 or downstream
TFs in a dense network. These results showed that hReg-CNCC
helped find the conserved elements that were responsible for facial
development and illustrated their regulations.

Next, we sought to annotate human accelerated regions58

(HAR) which were conserved in other species but had
dramatically increased substitution rates in the human lineage.
In total, 13 REs in hReg-CNCC were found to be associated with
HAR (P-value < 0.1001, Supplementary Fig. 5a). These REs were
associated with the development of neural crest and facial
diseases. For example, chr7:134379901-134380671 was predicted
to regulate CALD1. CALD1 was known to play an essential role in
the regulation of smooth muscle and non-muscle contraction59,
which was a derivative of neural crest60. chr17:597438-597652
regulated FAM57A, which was linked to “Sclerosteosis 1”, a
disease with abnormal character of skull and mandible61. And the
downstream TG of chr12:12472818-12473034 was LRP6, which
was associated with “tooth agenesis”62. To understand the
influence of these 13 REs more precisely, we overlapped them
with SNPs of 78 face distances (Supplementary Fig. 5b). There
were 9 SNPs involved with 5 of these 13 REs. Among these SNPs,
8 SNPs’ most relevant face distances (defined as the SNP’s
minimal P-value corresponded distance trait) were associated
with nose (Supplementary Fig. 5c), specifically “Pronasale”,
“Subnasale”, “Left Alare”, and “Right Alare”. This area was the
most heritable and explained most of the variance of human
faces40. Together with its association with HARs revealed above,
the nose area may also be the main difference between faces of
human and other species. Besides the sequence difference, the
accessibility of these 13 REs was different from chimpanzee with
fold change range from 3.3 to 647.3 (Supplementary Fig. 5d). The
downstream genes of these REs also showed a difference in
human and chimpanzee. For example, CHRNA3 had significantly
different expression levels in human and chimpanzee and it was a
trigeminal ganglion marker63.

Together, hReg-CNCC can be used to annotate evolutionarily
important elements of the human genome and illustrated their
regulatory mechanism on face development.

Discussion
In this paper, we proposed to construct a regulatory network in a
developmental context to understand the genetic variants and
complex phenotypes. CNCC was chosen as an embryonic cell
population that gives rise to a multitude of derivatives. Paired
gene expression & chromatin accessibility data were integrated to
reconstruct the genome-wide human Regulatory network of
Cranial Neural Crest Cells (hReg-CNCC). hReg-CNCC provided
a valuable resource to interpret genetic variant as early as gas-
trulation during embryonic development. Importantly the
architecture that upstream, core, and downstream TFs were
associated with functions of neural plate border, specification, and

Fig. 4 hReg-CNCC identifies causal regulations for genetic variants and reveals biological insights for genotype and phenotype mapping. a Face GWAS
SNPs are more enriched in CRMs in hReg-CNCC than CNCC ATAC-seq peaks by fold change along with –log(P-value). Other tissues’ fold change is the
mean of 27 samples (Supplementary Data 4). b Procedure to associate TF-CRM-TG triplet with significant SNPs passing threshold. If one SNP is located on
CRM, then the TF-CRM-TG is linked by this SNP and form a SNP associated TF-CRM-TG. c The face SNPs associated TF-CRM-TG network. In the network,
REs associated with SNPs are shown instead of the whole CRM. The colors of SNP, RE, and TG indicate different sub-phenotypes for the face illustrated in
the right corner. d Ranking the regulatory strength in the face SNP associated network shows that ALX1 is a pivotal regulator. e RNA-seq, ATAC-seq,
H3K27ac, and RE tracks around ALX1. Two SNPs are located in REs of ALX1: one in promoter, the other in 97K upstream cis-regulatory region. The SNP in
promoter changes the binding affinity of TCF cluster and the SNP in distal RE changes the binding affinity of IRX3 and FOXM1, which causally alter ALX1’s
expression level and further face phenotype is given that ALX1 is the master regulator in CNCC’s migration. f, g Examples of two types of SNPs’ multi-trait
effect in SNPs associated network. h Multiple SNP cooperation example in SNPs associated network. EnR Right Endocanthion, EnL Left Endocanthion, Prn
Pronasale, AlL Left Alare.
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migration were explored in hReg-CNCC and biological insights
were derived on how this architecture was associated with genetic
variants of human facial GWAS, disease traits, and DNA
sequence differences in evolution.

The human face is an exemplar complex morphological
structure resulting from the intricate coordination of genetic,
cellular, and environmental factors64. The scientific questions we
are interested in is how it arises during development and evolved
during evolution. One solid starting point is the genetic archi-
tecture of the human face characterized by GWAS to multivariate
shape phenotypes. The traditional method to annotate GWAS
variant is to use FUMA65 or GREAT66 to establish the association
with genes located within 500 kb of the SNPs. Beyond this tissue
non-specific and noisy annotation, the activity of GWAS regions
can be assessed by the epigenomic mapping datasets. For exam-
ple, ChIP-seq signals of H3K27ac is used as a marker of the

promoter of transcriptionally active genes and active distal
enhancers. Here we propose a developmental context-specific
network as one step further to annotate genetic variant by pro-
viding better resolution at <1 kb regulatory regions and detailed
interpretation with upstream binding TFs and downstream TGs.

Reproducibility is essential to reliable scientific discovery in
high throughput experiments. In this work, we propose a con-
sensus optimization approach to measure the reproducibility of
regulations identified from replicate experiments. The reprodu-
cibility concept was previously used in the IDR method for
studying protein-binding regions on the genome by ChIP-seq
assay67. We show consensus optimization outperforms the naive
integrative methods and can fully utilize the information in
biological replicates.

We note that the insufficient knowledge of human CNCC
hinders the validation of hReg-CNCC. To battle the scarcity of

Fig. 5 hReg-CNCC provides mechanism understanding for human face related diseases. a 18 face associated traits in GWAS catalog are scanned and 6
(1/3) can be explained by hReg-CNCC with associated RE and TF-TG regulation. TFs were filtered to select top TFs (details in “Methods”). b rs11609609 is
associated with frontonasal distances. c Detailed regulation of rs11609609 and ALX1, which influences frontonasal face and “Monobrow”. d The upstream
TFs and CRM of BAZ1B in hReg-CNCC support BAZ1B as a causal gene associated with the rare disease Williams-Beuren Syndrome. Two SNPs,
rs73134905 and rs62466263, locate in the downstream enhancer and promoter (two REs in the CRM) of BAZ1B. These two SNPs are most associated with
face width phenotype in GWAS study. Face width phenotype is consistent with wilder face symptom of WBS patients.
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direct gold-standard positives, we use three independent data
sources to approximately validate hReg-CNCC including CNCC
pathways in non-human organisms, ChIP-seq data of core reg-
ulators in human CNCC, and expression data of human CNCC.
Combined evidences of these three aspects support that hReg-
CNCC performs better than other methods. In addition, we uti-
lize recall, precision, and F1 score metric to make a comparison
with other methods. The “low” precision rate and F1 score is
caused by the imbalance of the predicted set and validated set. For
example, among the 50 genes of CNCC pathway, our hReg-
CNCC predicts 703 regulations with good coverage and there are
only 90 edges in CNCC pathways, which are likely to be only
partially annotated.

The three-germ lineage model of cell type has limitations and
the neural crest has long been argued as a fourth germ lineage68.
CNCC represents an early time point in facial development with
known neural crest master regulators, Nr2f1, Nr2f2, Msx1, Msx2,
and Tfap2a37,69. Currently hReg-CNCC only provides the snap-
shot regulation at this single time point. It’s not surprising that
hReg-CNCC can only interpret limited number of SNPs and the
overall enrichment is quite modest. The craniofacial tissues

represent progressively later time points and the intermediate cell
types during development and their regulatory networks should
be reconstructed in future.

Another limitation of this study is the use of significant SNPs
from GWAS study to study their influence on upstream TF
binding. Since GWAS detects the tag SNPs, which are useful to
identify the genomic regions on the chromosome but do not have
a direct causal relation to the phenotype. Thus, our predictions on
SNP’s influenced upstream TF binding should be interpreted
carefully since they are only markers on chromosomes. We expect
future progress on this problem will come from fine mapping
with WGS data70.

hReg-CNCC infers the regulation of gene expression as the
interaction of TFs with DNA regions with open chromatin
structure in CNCC and correlation of gene expression and
chromatin accessibility across ENCODE tissue samples23. Much
deeper understanding can be revealed by 3D chromatin interac-
tion data to provide physical enhancer-promoter interactions71

and time course regulatory analysis, in which both gene expres-
sion and chromatin accessibility are measured at each develop-
mental time point in a time course experiment26. Furthermore,

Fig. 6 hReg-CNCC interprets the DNA difference in evolution and uncovers important regulatory elements and genes. a The scheme to extract the
subnetwork in hReg-CNCC associated with human evolutionarily important elements from comparative genomics. If one human evolutionarily important
element is overlapped with CRM, this TF-CRM-TG triplet is extracted and pooled into a subnetwork. b The evolutionarily UCEs associated network. Instead
of the whole CRM, only the REs associated with evolutionary elements are shown. Vista enhancer and literature evidence are annotated and support their
importance in face development.
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CNCC is known as a heterogeneous mixture of many cell types. It
will be fruitful to infer the regulatory networks of the underlying
cell types based on scATAC-seq and scRNA-seq data72. Another
possible application is about the cancer of CNCC derivatives,
such as skin. We found that most of the REs of hReg-CNCC were
also accessible in “lower leg skin”, but inaccessible in Skin
Cutaneous Melanoma (Supplementary Fig. 6a). Many REs of
CNCC regulators, such as SOX9/10, were also inactive in Skin
Cutaneous Melanoma (Supplementary Fig. 6b). This observation
indicates the potential role of hReg-CNCC to study cancer of
CNCC derivatives.

Methods
Ethical statement. The methods were performed in accordance with relevant
guidelines and regulations and approved by Academy of Mathematics and Systems
Science, Chinese Academy of Sciences.

Constructing regulatory network from paired gene expression and chromatin
accessibility data by PECA2. We utilized PECA2 to infer genome-wide and
context-specific regulatory networks based on gene expression and chromatin
accessibility data in that context26. Given paired RNA-seq and ATAC-seq data for
a single replicate, PECA2 hypothesized that TF regulated the downstream TG by
binding to CRM (Fig. 1). The main idea of CRM was proposed to combine several
REs bound by the same TF to regulate one common TG.

The regulatory strength of a TF on a TG was quantified by the trans-regulation
score, which was calculated by integrating information from multiple REs that may
mediate the activity of the TF to regulate the TG. A prior TF-TG correlation across
external public data from ENCODE database was included in the trans-regulation
score definition to distinguish the TFs sharing the same binding motif (i.e., TFs
from the same family). Specifically, a TF regulated a TG in CNCC if (1) the TF and
TG were expressed in CNCC, (2) this TF’s motifs were enriched in the REs of TG
in CNCC, and (3) the expression of TF was highly correlated with this TG across
diverse ENCODE samples. Taking these three factors into account, the trans-
regulation score Sij of i-th TF and j-th TG was quantified as

Sij ¼ ∑
k
BikREkIkj

� �
´ 2 Rijj j ´

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TFAiTGj

q
ð1Þ

Here TFAi represented the activity of the i-th TF and was calculated as the
geometric mean of normalized expression TFi and motif enrichment score on open
regions of CNCC. TGj was normalized expression of the j-th TG in CNCC. Bik was
motif binding strength of i-th TF on k-th RE, which was defined as the sum of
binding strength (motif position weight matrix-based log-odds probabilities given
by HOMER) of all of the binding sites of i-th TF on this RE. REk was the measure
of normalized accessibility for k-th RE in CNCC. Rij was the expression correlation
of i-th TF and j-th TG across diverse ENCODE samples. Ikj represented the
interaction strength between k-th RE and j-th TG, which was learned from the
PECA model on diverse cellular contexts23. In detail, PECA model predicted a set
Dj of REs to regulate the j-the TG. Then a regression model of j-th gene expression
on its REs’ accessibility was constructed,

TGj ¼ I0j þ ∑
k2Dj

IkjREk ð2Þ

We obtained the parameter Ikj by regression of the Eq. (2) with 148 public paired
expression and accessibility data of a human (Supplementary Data 4).

The CRM associated with a TF-TG pair was defined as a set of REs bound by TF
to regulate TG. We introduce Cij to denote a CRM for the i-th TF to regulate j-th
TG and formally index the K REs RE1, RE2, …, REK according to their position in
the genome from 5’ direction. We then mathematically represented CRM Cij by a
binary vector with length Lij ranging from start base of RE1 to the end base of REK .
For a single base q in the Cij of j-th TG, we defined,

Cijq ¼
1 q 2 RE1 ∪RE2 ∪ � � � ∪REK

0 q =2RE1 ∪RE2 ∪ � � � ∪REK

�
ð3Þ

In this way, we represented the output regulatory network for a single replicate by
ðSij;CijÞ1≤ i≤M;1≤ j ≤Nwith M TFs and N TGs, where Sij was regulatory strength for
i-th TF and j-th TG and Cij was CRM linking i-th TF and j-th TG (Fig. 1).

Consensus optimization model to integrate replicates. Given M TFs and N
TGs, a regulatory network was defined by the trans-regulation score S1≤ i≤M;1≤ j ≤N

and CRM C1≤ i ≤M;1≤ j≤N by PECA2 procedure. For R biological replicates in
general, we had R regulatory networks and the r-th was represented by Sr ;Crð Þ. In
order to integrate those replicates and obtained reproducible REs and TF-TG

regulations, we proposed the following consensus optimization:

min
S;C

Q ¼ ∑
i;j;r

ωr

��
Sij � Srij

�2 þ αkCij � Cr
ijk22

	� β∑
i;j
SijkCijk1 � γ ∑

i;j;q
CijqCijðq�1Þ þ μkSk1

s:t: Sij ≥ 0;Cijq 2 0; 1f g for 1 ≤ i≤ n; 1 ≤ j≤m; 1≤ q ≤ Lij;Cij0 ¼ 0
ð4Þ

Here S;C were the decision variables for optimal regulatory strength and CRM.
The first term in the objective function was the error term for consensus regulatory
strength S and consensus CRM C from R replicates Sr ;Crð Þ. It should be mini-
mized. α was to balance the scale of regulatory strength and CRM. ωr was the
weight assigned to the r-th biological replicate, which can be determined by
replicate quality, sequencing depth, prior knowledge, or equal weight as default.
The second term was maximizing consistency between regulatory strength and
length of CRM. The larger the regulatory strength was, the longer the CRM was,
i.e., more REs were selected in the final CRM. The third term was maximized to
encourage the continuity of bases in the RE along the genome. The last term was
minimized to obtain a sparse network by sparsity regularization. β; γ; μ were the
parameters introduced to balance the four terms in the objective function. The
constraints required positive regulatory strength S and binary vector C for genome
position.

Model (3) was a 0-1 integer programming and known as NP-hard problem. We
relaxed the integer constraints as follows,

Sij ≥ 0;Cijq 2 0; 1½ � for 1 ≤ i≤ n; 1≤ j≤m; 1 ≤ q≤ Lij;Cij0 ¼ 0 ð5Þ
This made Model (3) quadratic programming. And its first-order optimality
conditions were:

∂Q
∂Sij

¼ ∑
R

r¼1
2ωr Sij � Srij


 �
� βkCijk1 þ μ ¼ 0 ð6Þ

∂Q
∂Cijq

¼ 2α ∑
R

r¼1
ωr Cijq � Cr

ijq


 �
� βSij � γ Cijðq�1Þ þ Cijðqþ1Þ


 �
¼ 0 ð7Þ

Then we got:

Sij ¼
1
2ω

2 ∑
R

r¼1
ωrS

r
ij þ βkCijk1 � μ

� �
ð8Þ

Cijq ¼
1
ω
∑
R

r¼1
ωrC

r
ijq þ

β

2ωα
Sij þ

γ

2ωα
Cijðq�1Þ þ Cijðqþ1Þ


 �
ð9Þ

where ω ¼ ∑R
r¼1ωr .

We proposed the following iterative algorithm by the above optimality
conditions.

Step 1. Initiation: assigning an initial value to Sij and every base q in Cij .

Step 2. Updating the Ŝij and Ĉij in last round:

2.1 Sij ¼ 1
2ω ð2∑R

r¼1 ωrS
r
ij þ βkbCijk1 � μÞ

2.2 Cijq ¼ 1
ω∑

R
r¼1 ωrC

r
ijq þ β

2ωα Ŝij þ γ
2ωα ðĈijðq�1Þ þ Ĉijðqþ1ÞÞ

2.3 Stop if jSij � Ŝijj<ε; else Ŝij ¼ Sij , Ĉij ¼ Cij

Step 3. Output Cij and Sij .

Extracting dense TF network from hReg-CNCC. We supposed there were N0 TFs
in Module 1 and Module 2. We first extracted TF-TF regulatory matrix by taking
N0 TFs corresponding rows and columns, forming a N0 ´N0 TF regulatory
strength matrix S0. Then dense TF network was detected from this TF regulatory
strength matrix by the following quadratic programming:

max
u;v

∑
i
∑
j
S0ijuivj

s:t:∑
i
u2i ¼ 1;∑

j
v2j ¼ 1; ui ≥ 0; vj ≥ 0

ð10Þ

The variable ui was the measure of the importance of i-th TF and vj for j-th TF.
After solving this quadratic programming, the i-th TF was called upstream TF if
ui ≥ μc and vi < vc; core TF if ui ≥ μc and vi ≥ vc; downstream TF if ui < μc and
vi ≥ vc . We took cutoffs μc ¼ 0:1 and vc ¼ 0:05 in our experiments.

Subnetwork extraction from hReg-CNCC by genes, SNPs, and REs. For gene j
in a gene set J , we checked all TF-CRM-TG triplets and retained the triplet if gene j
was included as a TG. Combining these triplets resulted the subnetwork of hReg-
CNCC associated with a gene set. Formally, the sub-network was:

∪
j2J

Sij;Cij


 �
ð11Þ

For SNP p, we checked all TF-CRM-TG triplets and retained the triplet if the SNP
was located in its CRM. Then the subnetwork of hReg-CNCC associated with a set
of SNPs P was obtained as:

∪
p2P;Cijp¼1

Sij;Cij


 �
ð12Þ

For RE e, we checked all TF-CRM-TG triplets and retained the triplet if its CRM
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was intersected with this RE. Then, the subnetwork of hReg-CNCC associated with
a set of REs E was defined as follows:

∪
e2E;e�Cij>0

Sij;Cij


 �
ð13Þ

After obtaining the sub-networks, we conducted a filtering procedure to obtain
smaller but more significant sub-networks. For a sub-network, we considered the
TGs one by one. For a TG, we normalized its CRMs’ regulatory strength to z-score
and deleted the CRMs whose z-score was smaller than a threshold λ. λ was set to be
1.5 in Fig. 3c, 0 in Figs. 4c and 6b.

Human biased enhancer, human biasedly expressed genes, and fold change
enrichment. CNCC of human and chimpanzee were derived by iPS differentiation
in vitro and human biased enhancers were fetched from (Prescott, et al.)21. A gene
was called a human biased expressed gene if it satisfied two conditions: (1) t-test P-
value ≤ 0.05 between human and chimpanzee; (2) the average expression was
higher in human than in chimpanzee.

The fold change enrichment of human biasedly expressed genes was computed
by the following formula:

F ¼ Npb=Np

Nb=N
ð14Þ

where Npb was the number of predicted human biased expressed genes. Np was the
number of predicted genes. Nb was the number of human biased expressed genes.
N was the number of all genes.

A larger fold change meant higher accuracy of predicting CRM-TG regulations.
The proximity-based nearest genes were detected by GREAT with the default
setting. The ABC model was conducted with CNCC ATAC-seq, ChIP-seq of
H3K27ac, and public averaged Hi-C data with default cutoff 0.02 as described in
https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction.

Fold change enrichment of facial shape-associated SNPs on REs. For each
SNP, we took the minimum P-value of 78 distances as its P-value. Then for
thresholds 1.0, 10�1, 10�2, 10�3, 10�4, 10�5, 10−6, 10−7, 10−8, 10−9. we got SNP
sets of different thresholds. For SNP set of each threshold, we defined the fold
change enrichment as follows given the chromosome region set,

FC ¼ Pr=Lr
P=L

ð15Þ

Where Pr was the number of SNPs in given chromosome region. Lr was the length
of the given chromosome region. P was the total number of SNPs. L was the
genome length.

We calculated and compared FC value for three kinds of chromosome region
set: REs of hReg-CNCC, all union ATAC-seq peaks of CNCC, and peaks of other
tissues (Supplementary Data 4).

Naïve methods to integrate replicates. We compared our consensus
optimization-based replicate integration with two naïve methods, which were
union and intersection network. Union network was defined by selecting TF-TG
pair if this pair was contained by at least one of the 6 CNCC single replicate
networks. The intersection network was defined by selecting the TF-TG pair if this
pair was contained by all the 6 CNCC single replicate networks.

Null model of expected overlapping number between hReg-CNCC and UCE or
HAR. We generated 10,000 random sequence sets for UCEs and HARs respectively
for construction of null model. Taking UCEs for example, every random set of
UCEs was generated with command “bedtools shuffle -i UCEs.bed -g hg19.sizes”.
The 10,000 random sets were regarded as the null model. We intersected every of
10,000 random sequence sets of UCEs with REs in hReg-CNCC and obtained the
number of overlapped sequences. We found only 74 UCE random sets had more
than 5 overlapped sequences with hReg-CNCC, which give the P-value 0.0074 of
UCEs’ overlapping with hReg-CNCC. Similarly, we obtained the P-value of the
overlapping between hReg-CNCC and HARs.

Statistics and reproducibility. The comparison between consensus optimization
and single networks in Fig. 2a was conducted by unpaired one-tailed t-test with
N= 6 experiments for both single networks and consensus optimization. The
heatmap and clustering were conducted with R package “pheatmap”. The com-
parison between the dense network and random generated network with same
node number was conducted by unpaired one-tailed t-test with N= 19 edges for
dense network and random generated network. The overlapping between modules
of hReg-CNCC and dense network, the overlapping between hReg-CNCC and
hReg-CNCC-H9 was conducted with hypergeometric test with N= 25,268 genes.
Empirical P-values was obtained to evaluate the overlapping between UCE (HAR)
and hReg-CNCC by a randomly generated null model.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data underlying the main figures are presented in Supplementary Data 5. The
RNA-seq and ATAC-seq data of CNCC were downloaded under GEO accession
GSE70751. GWAS summary statistics of facial distance were downloaded from GWAS
catalog under accession GCST009464. Human ultra-conserved elements were
downloaded at https://users.soe.ucsc.edu/~jill/ultra.html. Human accelerated regions
were downloaded as the supplementary data of Hubisz et al.58. All other data are
available from the authors upon reasonable request.

Code availability
All codes for consensus optimization and analysis were available at https://github.com/
AMSSwanglab/hReg-CNCC and archived in Zenodo73.
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