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Automatic landmarking identifies new loci
associated with face morphology and implicates
Neanderthal introgression in human nasal shape
Qing Li 1,24, Jieyi Chen1,2,24, Pierre Faux 3, Miguel Eduardo Delgado1,4,5, Betty Bonfante3,

Macarena Fuentes-Guajardo6, Javier Mendoza-Revilla7,8, J. Camilo Chacón-Duque 9, Malena Hurtado7,

Valeria Villegas7, Vanessa Granja7, Claudia Jaramillo10, William Arias 10, Rodrigo Barquera 11,12,

Paola Everardo-Martínez11, Mirsha Sánchez-Quinto13, Jorge Gómez-Valdés 11, Hugo Villamil-Ramírez14,

Caio C. Silva de Cerqueira15, Tábita Hünemeier16, Virginia Ramallo17,18, Sijie Wu1,2, Siyuan Du 2,

Andrea Giardina 19, Soumya Subhra Paria19, Mahfuzur Rahman Khokan19, Rolando Gonzalez-José18,

Lavinia Schüler-Faccini17, Maria-Cátira Bortolini17, Victor Acuña-Alonzo11, Samuel Canizales-Quinteros14,

Carla Gallo7, Giovanni Poletti7, Winston Rojas10, Francisco Rothhammer20, Nicolas Navarro 21,22,

Sijia Wang 1,2, Kaustubh Adhikari 19,23,25✉ & Andrés Ruiz-Linares 1,3,23,25✉

We report a genome-wide association study of facial features in >6000 Latin Americans

based on automatic landmarking of 2D portraits and testing for association with inter-

landmark distances. We detected significant associations (P-value <5 × 10−8) at 42 genome

regions, nine of which have been previously reported. In follow-up analyses, 26 of the 33

novel regions replicate in East Asians, Europeans, or Africans, and one mouse homologous

region influences craniofacial morphology in mice. The novel region in 1q32.3 shows intro-

gression from Neanderthals and we find that the introgressed tract increases nasal height

(consistent with the differentiation between Neanderthals and modern humans). Novel

regions include candidate genes and genome regulatory elements previously implicated in

craniofacial development, and show preferential transcription in cranial neural crest cells. The

automated approach used here should simplify the collection of large study samples from

across the world, facilitating a cosmopolitan characterization of the genetics of facial features.
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Genome-wide association studies (GWAS) of human facial
features are contributing importantly to elucidating the
genetic basis of variation in facial features in the general

population1–17. The genomic regions identified often overlap
developmental genes, and have been shown to be enriched in
regulatory elements active during craniofacial development4,17.
These studies were initially performed in individuals of European
descent7,9–11. Face GWASs are being gradually extended to the
characterization populations of non-European ancestry1–3,5,6,16.
The increasing characterization of non-Europeans is helping to
draw a fuller picture of the genetic architecture of facial variation
in humans and further our understanding of the evolution of
human facial features.

GWASs of facial variation have used a range of phenotyping
approaches, from qualitative assessment of morphological fea-
tures on 2D photographs1, to measurements based on manual
landmarking of 2D photographs2, to semi-automatic analyses of
3D facial images4,15. These approaches vary greatly in cost,
informativity, and ease of application. Although 3D images fully
represent facial morphology, acquisition of such data requires
specialized equipment, complicating their widespread application
across the world. Although less informative than 3D imaging,
standard 2D photographs have the potential to facilitate the
collection of large, diverse study samples. However, manual
landmarking of 2D photographs is a slow, labor-intensive task.
This has fostered an interest in the application of fully automatic
landmarking approaches. However, so far these have enjoyed
limited success18–20. Most studies based on 2D photographs have
therefore been based on entirely manual1 or, at times, semi-
automatic landmarking9 (i.e. combining automatic landmarking
with manual editing).

Here we report a GWAS of facial features derived from a fully
automatic landmarking of 2D frontal photographs from Latin
Americans of mixed European, Native American and African
ancestry. The association signals detected overlap with previous
GWAS findings. In addition, we identify 33 novel signals. For
most of the novel signals identified, we find evidence of statistical
replication in European, East Asian, or African GWAS data, and
one mouse homologous region influences craniofacial morphol-
ogy in mice. One of the novel regions identified includes a tract of
introgression from Neanderthals, which we associate with an
increase in nasal height, consistent with the morphological dif-
ferentiation between Neanderthals and modern humans.

Results
Study sample and phenotyping. The 6486 individuals examined
here are part of the CANDELA cohort, collected in five Latin
American countries21. This cohort has been previously studied in
GWASs of various physical appearance traits1,2,22–24. This
includes two previous facial morphology GWASs based on 2D
photographs: one mainly based on categorical (i.e. morphoscopic)
phenotyping, and one based on manual landmarking of lateral
(profile) photographs1,2,24. Individuals included in these studies
were genotyped on Illumina’s OmniExpress chip (including
>700,000 SNPs) and characterized for a set of standard covariates
(age, sex, BMI, and genetic ancestry estimated from the chip
data)1,2,24.

Here we used the Face++ cloud service platform (https://www.
faceplusplus.com) to automatically place 106 landmarks on
frontal 2D photographs (i.e. portraits) from the CANDELA
individuals (Supplementary Fig. 1). Previously, 16 of these
landmarks had been placed manually on a small subset of these
individuals1 and we used these data to evaluate the robustness of
the Face++ landmarking. We also compared Face++ with Dlib,
a popular landmarking tool25,26 (Supplementary Table 1). We

calculated Interclass Correlation Coefficients (ICCs) and median
Euclidean distances between landmarks placed manually, by
Face++, or by Dlib. According to both metrics, the landmarks
placed by Face++ were very close to the manual landmarks, and
the performance of Face++ was superior to Dlib for certain
landmarks (Supplementary Table 1).

After Procrustes superposition, we calculated inter-landmark
distances (ILDs) between 34 Face++ landmarks (mostly corre-
sponding to well-defined anatomical landmarks, Fig. 1a and
Supplementary Table 2)1,8,10,17,27–29. Accounting for face symme-
try, we obtained 301 distances. Some of the landmarks retained are
on the eyebrow edges, making distances based on them sensitive to
eyebrow size (Fig. 1b). The distances obtained show considerable
variation and are approximately normally distributed (Supplemen-
tary Fig. 2). Many distances show a significant correlation with
three head angles estimated by Face++ (pitch, roll, and yaw angle),
reflecting the effect of head pose (Supplementary Table 3,
Supplementary Fig. 3). Consequently, we excluded 76 individuals
with extreme head angle values, and included these angles as
covariates in the genetic association tests.

Trait/covariate correlation and heritability. A low to moderate
(but significant) correlation was detected for various ILDs with
covariates (full results are presented in Supplementary Table 3).
Strongest correlation with sex was seen for the distances between
landmarks 6-4 (rpb= 0.62, p < 10−5), landmarks 6-25 (rpb= 0.59,
p < 10−5), and landmarks 8-12 (rpb= 0.58, p < 10−5) (Supple-
mentary Table 3, Supplementary Fig. 3). These three distances are
greater in women than in men and relate to eyebrow shape
(probably reflecting cosmetic shaping in women). Strongest cor-
relation with age was seen for the distance between landmarks 4-
21, sensitive to the spacing between eye and eye-brow (ρ=−0.31,
p < 10−5), and for measures of lip thickness (ρ=−0.25, p < 10−5,
Supplementary Table 3; consistent with previous analyses1,2).
Strongest correlation with European ancestry was seen for dis-
tances sensitive to nasion position (distance between landmarks
12 and 14: ρ=−0.24, p < 10−5), lip thickness (distance between
landmarks 31 and 33: ρ=−0.19, p < 10−5), nasal root breadth
(distance between landmarks 14 and 15: ρ=−0.22, p < 10−5) and
nose wing breadth (distance between landmarks 16 and 17:
ρ=−0.20, p < 10−5) (Supplementary Table 3, Supplementary
Fig. 3). These correlations of facial features with genetic ancestry
are consistent with previous observations1,2. We estimated
narrow-sense heritability (h2) based on the kinship matrix
derived from SNP data30 and observe moderate values for most
traits (Median h2 of 0.38, Supplementary Fig. 3 and Supple-
mentary Table 3).

Overview of GWAS results. After applying genotype and phe-
notype data quality control (QC) filters (see Methods for details),
we evaluated association for ILDs with up to 11,532,785 SNPs on
up to 5988 individuals. We considered a P-value <5 × 10−8 as
threshold for significance, as this is stricter than the False Dis-
covery Rate (FDR) multiple testing correction procedure of
Benjamini–Hochberg (which results in a threshold of 2 × 10−6,
across SNPs and traits, see Methods). Altogether, 42 genomic
regions were significantly associated with at least one ILD and
148 distances were associated with at least one of these 42
genomic regions (Fig. 1c, Supplementary Table 4). Among these
42 regions, nine have been previously reported in previous
GWAS of facial features, including six regions that were detected
in the two previous face GWASs we conducted in the CANDELA
cohort (Supplementary Fig. 4 and Supplementary Table 4).
Table 1 provides summary information on the nine regions
reported in previous studies that were replicated here (additional
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information on these regions is provided in Supplementary
Note 1 and Supplementary Fig. 5).

Follow-up of newly associated regions: replication in inde-
pendent cohorts. We sought evidence of replication for the 33
newly associated genome regions using results from studies in
independent samples. Considering the admixed ancestry of the
CANDELA individuals, we sought replication in samples with
different continental ancestries. We therefore used available data

from East Asians, Europeans and Africans. For East Asians, we
had available frontal 2D photographs and genome-wide SNP data
for 5078 individuals31,32. These data were processed as for the
CANDELA sample. For Europeans and Africans, we extracted
association P-values from published studies: a GWAS meta-
analysis including data for 10,115 Europeans and 78 ILDs17 and a
GWAS performed in 3631 Africans for 34 size and shape-related
facial traits (distances and Principal Components (PCs))5,33.
When data for the index SNP of a region identified in the
CANDELA sample was not available in the other study samples,

Fig. 1 Overview of the facial features GWAS performed here. a Dots indicate the location of the 34 facial landmarks used for calculation of 301 inter-
landmark distances (ILDs, Supplementary Table 2 provides additional information on these landmarks). b Lines represent the 148 ILDs for which we
detected significant association with at least one genomic region in the CANDELA data. Black lines refer to ILDs that resulted in replication of previously
reported associations (Table 1). Red lines represent ILDs that revealed novel associations (with a darker red highlighting the ILDs associated with five
genomic regions discussed in the text; Table 2). c Combined Manhattan plot illustrating all significant GWAS hits (-log(P) > 7.3, red line). Black labels
indicate candidate genes from previous GWASs that were replicated here (Table 1). Red labels highlight the main candidate genes at the five novel regions
discussed in the text. For visibility, the y-axis has been truncated at a -log(P) of 13.
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we examined as proxies SNPs in LD with the index SNP in a
region (r2 >=0.1). For six of the novel regions detected, no
polymorphic SNPs across datasets were available, preventing
evaluation of replication for these regions. We calculated a sig-
nificance threshold for replication of 0.029 using
Benjamini–Hochberg’s FDR procedure (accounting for 27 regions
tested in four replication datasets). Altogether, 26/33 regions had
association P-values <0.029 for at least one distance, in at least
one of the replication datasets (22 in East Asians, 21 in Europeans
and 5 in Africans; with 4 regions replicating in all three inde-
pendent datasets) (Supplementary Table 4, Supplementary
Note 2-3).

Follow-up of novel face regions in the mouse. To evaluate the
potential effect in the mouse of the face regions newly identified
here, we reanalyzed published genome-wide SNP data from
outbred mice characterized for craniofacial shape variation34. Of
the 33 novel regions identified here, 30 could be successfully
mapped onto the mouse genome (Supplementary Table 5). Of
these, a region on mouse chromosome 5q (homologous to human
22q12.1) showed significant association for SNPs over a ~1.5 Mb
segment, with the index SNP in this region (rs32069343, P-value:
2 × 10−34), impacting on multiple aspects of mouse skull and
mandible shape (Fig. 2, Supplementary Movie). In the CANDELA
GWAS, SNPs in 22q12.1 are associated with ILD D437 between
landmarks 3 and 31 (Fig. 1), a distance sensitive to the height of
the lower face (smallest P-value of 1.8 × 10−8 for rs9608473,
Fig. 2). In previous studies, SNPs in 22q12.1 have been strongly
associated with height35, and suggestively associated with facial
features36,37 and cleft lip/palate38.

Neanderthal introgression in 1q32.3 and facial morphology.
One of the novel, replicating, regions identified here is in 1q32.3.
SNPs in this region are associated with ILDs D203, D166 and
D233, which involve landmark 13 together with landmarks 23, 19
and 25, respectively (Fig. 1). Strongest association was observed
for rs12564392 and ILD D203 (P-value 2 × 10−8). The three
associated distances are mainly sensitive to midface height.
Interestingly, previous studies have reported Neanderthal intro-
gression in 1q32.339,40. To evaluate the relationship between the
association signal in 1q32.3 and Neanderthal introgression in the
region we screened a 1Mb window around the association signal
for evidence of introgression in the CANDELA data41. Con-
sidering only introgression tracts >10 Kb long called at >99%
confidence, we observe that Neanderthal introgression in 1q32.3
peaks in the region of strongest association seen in the GWAS
(Fig. 3). Up to 31% of CANDELA chromosomes carry Nean-
derthal tracts in this region. As seen in the SNP-based GWAS, the
Neanderthal tracts are significantly associated with distances

D203, D166, D223 (at a Benjamini–Hochberg’s FDR significance
threshold of 0.015), and lead to an increase of these distances
(Fig. 3, Supplementary Table 6).

To evaluate the consistency of the introgression effect seen in
the CANDELA data with the facial differentiation between
modern humans and Neanderthals we examined available data
on Neanderthal facial features42. No information is available in
Neanderthals for distances equivalent to D203, D166 or D223.
However, a related distance (also sensitive to midface height)
which is available in Neanderthal is Subspinale-Nasion (i.e. nasal
height). The equivalent distance, between Subnasal (landmark 18)
and Nasion (landmark 12), was also measured in the CANDELA
individuals (ILD D117). We thus tested for association between
Neanderthal introgression in 1q32.3 and D117 and found it to be
significant (P-value 1.7 ×10−7; Fig. 3, Supplementary Table 6),
with introgression resulting in an increased distance. Consis-
tently, comparison of skulls from modern humans and
Neanderthals shows that Neanderthals have a markedly higher
nasal height (Fig. 3, Supplementary Table 7).

Local ancestry analyses in the CANDELA individuals show
that Neanderthal tracts occur almost exclusively on a Native
American chromosomal background (Supplementary Fig. 6). This
observation is consistent with previous analyses which detected
1q32.3 introgression essentially in Native Americans40 and agrees
with the GWAS index SNP in this region (rs12564392) having
highly differentiated allele frequencies between Europeans and
Native Americans (Table 2).

Features of novel regions and their effects on ILDs. Table 2
summarizes key features for the 22q12.1 and 1q32.3 regions
discussed above as well as for the three novel (replicating)
regions, most strongly associated with ILDs in the CANDELA
sample. Association plots for these three regions and the asso-
ciated ILDs are shown in Fig. 4. Similar information on all the
other novel associated regions is presented in Supplementary
Table 4 and Supplementary Note 2-3. SNPs in 3q21.1 are asso-
ciated with 8 distances reflecting variation mainly in the width of
the upper face with strongest association being seen with distance
D213 (between landmarks 2 and 25, Figs. 1 and 4). SNPs in
8p11.21 are associated with seven distances (strongest association
seen for rs59547557 with D332, involving landmarks 10 and 27,
P-value 2.24 × 10−9, Fig. 4). All seven distances associated with
this region are sensitive to the position of the right cheilion
(Figs. 1 and 4). In previous studies, SNPs in 8p11.21 have been
reported to be suggestively associated with non-syndromic cleft
lip/palate43. SNPs in 10p11.1 are associated with 8 distances, with
strongest association seen for rs58831446 with D511 (between
landmarks 16 and 33, P-value 1 × 10−10). These 8 distances are
sensitive to philtrum height (Figs. 1 and 4).

Table 1 Features of nine genome regions reported in previous face GWASs for which genome-wide significant association is also
observed here.

Chromosomal region Index SNP Candidate gene # significant ILDs # significant SNPs Strongest P-value Refs.

2q12.3 rs72627476 EDAR 75 1245 5.60 × 10−34 1,2,8

7p14.1 rs846315 GLI3 5 31 1.20 × 10−12 1,15

2q36.1 rs13022712 PAX3 18 37 6.42 × 10−12 2,4,8–11,15,17

5q13.2 rs7341037 FOXD1 10 18 1.49 × 10−10 31

6p21.1 rs141680515 SUPT3H/RUNX2 15 275 1.68 × 10−10 1,2,4,8,11,15

15q21.1 rs1426654 SLC24A5 2 4 1.74 × 10−10 2

4q31.3 rs2045323 DCHS2/SFRP2 8 64 9.35 × 10−10 1,2,4,15

5p12 rs4505960 FGF10 3 1 2.43 × 10−8 15

15q25.2 rs62027787 ADAMTSL3 1 3 2.65 × 10−8 15

Genes underlined include significantly associated SNPs. Genes in bold include an associated SNP leading to an amino-acid substitution.
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Genome annotation, Gene Ontology and transcription pat-
terns in associated regions. We used FUMA44 to examine genome
annotations for the 186 SNPs that were significantly associated across
the 33 novel regions detected in the CANDELA sample. Altogether,
91 are intergenic, 55 are intronic, 39 are ncRNA variants, and one is
in a 3’ untranslated region. In line with previous analyses showing an
enrichment of SNPs associated with facial features in regulatory
elements active during craniofacial development4,17, we observe that
SNPs in the novel regions identified here are usually near or within
known craniofacial enhancers/promoters (e.g. 1q32.3 and 12q21.31,
Fig. 3, Supplementary Table 4). We performed a Gene Ontology
(GO) analysis for the genes nearest to the index SNPs of the novel
associated regions. Consistent with previous analyses4,17, we
found that these genes are significantly enriched in growth and
development terms, including: GO:0006936: muscle contraction
(P-value= 8.81 × 10−5), GO:0019827: stem cell population main-
tenance (P-value= 2.19 × 10−4), GO:0051960: regulation of nervous
system development (P-value= 1.17 × 10−3), GO:0021700: develop-
mental maturation (P-value= 2.28 × 10−3), GO:0048562: embryonic
organ morphogenesis (P-value= 3.30 × 10−3), GO:0007162: negative
regulation of cell adhesion (P-value= 3.83 × 10−3), and GO:0032940:
secretion by cell (P-value= 8.17 × 10−3) (Supplementary Fig. 7A). To
evaluate preferential transcription of genes in the newly associated
regions, we contrasted publicly available RNAseq data from cranial
neural crest cells (CNCC)45 to data for 318 other cell types obtained

by the ENCODE project46. We found that, for the majority of the
regions that could be tested (19/26), transcripts closest to the index
SNPs are preferentially expressed in CNCCs, compared to other cell
types, similar to what has been observed in previous analyses4,17

(Supplementary Fig. 7B).

Discussion
GWAS of facial features have identified dozens of associated
genome regions1–17. In some cases, these regions overlap genes
for which experimental evidence demonstrates their involvement
in craniofacial development1,2,47. Furthermore, most of the SNPs
associated with facial features are in non-coding regions, and
enrichment analyses indicate that these SNPs are preferentially
located in regulatory elements of the genome, active during cra-
niofacial development1,2,4,17. Consistently, the novel loci (and
associated SNPs) we identify here share features with findings
from previous GWAS of facial morphology.

Considering the five chromosomal regions highlighted in
Table 2: (i) 1q32.3 overlaps the Activating Transcription Factor 3
ATF3 gene (Fig. 3). ATF3 is an evolutionarily highly conserved
transcription factor known to be involved in nervous tissue
regeneration after trauma48. Although currently there is no evi-
dence for a direct involvement of ATF3 in craniofacial develop-
ment, it has been reported that ATF3 expression is regulated by
FOXL2, a transcription factor whose mutations are known to lead

Fig. 2 Regional association plots in mouse and human. a At the top are shown P-values for SNPs in the mouse chromosome 5 region homologous to
human 22q12.1 . Dot colors reflect LD with the index SNP (rs32069343). Underneath are shown genes annotated in the region. b Effect of rs32069343 on
mouse skull shape (expansion/contraction relative to the mean shape is shown in blue/brown). To facilitate visualization, the effect has been magnified
×20 (see also Supplementary Movie). c LocusZoom plot for 22q12.1: the top panel shows SNP P-values (dot color reflecting LD with the index SNP
rs9608473). The bottom panel displays genes annotated in the region. d, e Facial landmarks placed by Face++ (dark dots indicate the landmarks retained
in ILD calculation). Lines indicate ILDs associated with SNPs in 22q12.1. In d line color reflects association P-value; in e line color reflects the direction and
magnitude of the association. The ILD with strongest association P-value (D437) is labelled.
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to alterations of the midface49. Furthermore, strongest association
was observed for SNPs intronic to ATF3 around an enhancer
which has been shown to be active during craniofacial
development50 (Fig. 3). (ii) Associated SNPs in 3q21.1 overlap the
MYLK (Myosin light chain kinase) gene, which studies in mice
have implicated in palate fusion during development51. (iii) The
newly associated 8p11.21 region includes a cluster of disintegrin
and metalloproteinase (ADAM) domain genes (Fig. 4). This is a
family of surface proteins with adhesion and protease activity,
members of which have been shown to be involved in craniofacial
development52. Furthermore, one of the ADAM genes in the
cluster on 8p11.21 (ADAM3A), has been suggestively associated
with non-syndromic cleft lip/palate43. (iv) Associated SNP on
10p11.1 overlap a cluster of Zinc Finger proteins genes (ZNF,
Fig. 4). This cluster includes ZNF25, which has been shown to be
involved in osteoblast differentiation of human skeletal stem
cells53, this is a process in which RUNX2 (a well-established
craniofacial morphology gene, Table 1) also plays a major
role54–56. (v) The mouse analyses performed here are consistent
with the novel association we detect on human 22q12.1. In

humans, maximum association is seen for SNPs intronic to the
SEZ6L gene (Fig. 2). In mice, SNPs in Sez6l are also significantly
associated, although association is strongest around the Ttc28 and
Mn1 gene regions (Fig. 2). There is currently no evidence
implicating SEZ6L directly in craniofacial phenotypes, but there is
abundant evidence that Ttc28, Mn1 and other genes in this region
are involved in mouse craniofacial development (Fig. 2)34,57,58.
Interestingly, of the candidates highlighted here, three (ATF3,
MYLK and SEZ6L) are the genes closest to the index SNPs and, in
our RNAseq data analysis, we observe that two of these genes
(MYLK and SEZ6L) are preferentially transcribed in CNCC cells
(Supplementary Fig. 7B).

Genetic determinants of variation in facial features in con-
temporary human populations are also likely to have played a role
during the evolution of facial morphology. We previously iden-
tified a region in 1p12 in which a tract introgressed from archaic
humans (Denisovans) impacts on lip thickness. That chromoso-
mal region had previously been shown to be associated with body
fat distribution59 and bears a strong signature of natural selection,
raising the possibility that Denisovan introgression could have

Fig. 3 Neanderthal introgression in 1q32.3 and facial variation in the CANDELA sample. a At the top is shown the frequency of introgression tracts (i.e.
stacking tracts across CANDELA individuals) overlaid onto the GWAS SNP P-values with ILD D223. The 100 kb segment displayed includes the GWAS and
introgression peaks. Below are shown association P-values from an admixture mapping analysis of the Neanderthal introgression tracts with four ILDs
(D166, D203, D223 and D117). Diamonds mark the center of an admixture mapping segment with whiskers marking its extent (details on these segments
are in Supplementary Table 6). At the bottom are shown genes in the region. The dotted line beneath the genes displays craniofacial annotations from the
Epigenomic and Transcriptomic Atlas of Human Craniofacial Development (colored in accordance with the Roadmap Epigenomics project https://egg2.
wustl.edu/roadmap/web_portal/imputed.html#chr_imp; red/brown boxes representing craniofacial-specific super-enhancers). b, c ILDs tested in panel a:
D166 (landmarks 13–19), D203 (landmarks 13–23), D223 (landmarks 13–25), and D117 (landmarks 12–18). In b the color scale indicates admixture mapping
association P-value. In c color scale indicates direction and magnitude of the association. d Box plots for nasal height (NLH) in skulls from 1190 modern
humans (from three continental populations) and 10 Neanderthals. Modern human data is from Howells’ database (http://web.utk.edu/~auerbach/
HOWL.htreilm;94 Supplementary Table 7). Neanderthal data is from Weaver and Stringer95. P-value shown is from a Mann–Whitney U test contrasting
modern human and Neanderthal data. e Example skulls from a modern human (Native American) and a Neanderthal (Amud 1). The 3D images are
reproduced on the scale shown underneath. Nasal height (distance between the nasion and sub-spinale landmarks) is shown as a red line (modern
human= 50.2 mm; Neanderthal= 63.8 mm). The modern human image is from the collection of the División de Antropología, Museo de La Plata
(Argentina). The Neanderthal image was obtained from the MorphoSource repository (https://www.morphosource.org/concern/media/000005749).
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facilitated adaptation to a cold environment. The evidence we
observe of Neanderthal introgression in 1q32.3 impacting on
mid-face height represents the second instance of archaic human
introgression affecting facial morphology in modern humans. In
this case, the possibility of examining similar skull traits in con-
temporary human and Neanderthal skulls allowed us to deter-
mine that the increase in mid-face height associated with archaic
introgression in 1q32.3 is consistent with the modern human-
Neanderthal morphological differentiation. Evaluating the con-
sistency of phenotypic effects had not been possible in the case of
Denisovan introgression in 1p12 as that case concerned only soft
tissues (the lips). Analysis of skulls has long shown that facial
morphology differs markedly between Neanderthals and modern
humans with the mid-face, particularly the nasal cavity, showing
major differences60. This includes markedly taller noses in
Neanderthals than in modern humans. Furthermore, it has long
been speculated that nose morphology (in Neanderthals as well as
in modern humans) has been the subject of natural selection,
particularly as an adaptation to environmental temperature and
humidity61–63. Further genetic work, including future analyses of
additional ancient DNA samples, could help shed light on this
question.

Although the earliest (and largest) studies on the genetics of
facial variation have been carried out in people of Europeans
ancestry4,9,10, recent efforts have increasingly sought to examine
non-Europeans1,2,5,32. Populations with admixed continental
ancestry, such as Latin Americans, offer challenges and oppor-
tunities for such studies. In these populations, optimal correction
for population stratification, considering both global and local
genomic ancestry, is a challenging analytical problem for which
an all-round solution is yet to be developed64–66. Use of genetic
PCs and local ancestry correction approaches to deal with
population stratification should therefore be undertaken with
caution. Nevertheless, the extensive genetic and phenotypic
diversity of Latin Americans is enabling GWASs that have led to
important insights into the genetics of physical
appearance1,2,22–24. This is illustrated here by the novel instance
of archaic introgression detected in 1q32.3: the introgressed tract
has a high frequency in Native Americans but is essentially absent
in Europeans (Table 2, Supplementary Fig. 6). Given the wide-
spread availability of 2D photographs, the automated land-
marking approach we applied here could facilitate a more com-
prehensive world-wide sampling of human facial variation than
hitherto attempted. The study of larger and more diverse study
samples should enable a fuller assessment of the genetic archi-
tecture of facial variation in the global human population and of
the evolutionary forces that have shaped this variation across
the world.

Methods
Study subjects. Discovery sample: 6486 (Colombia, N= 1407; Brazil, N= 674;
Chile, N= 2003; Mexico, N= 1203 and Peru, N= 1199) individuals from the
Consortium for the Analysis of the Diversity and Evolution of Latin America
(CANDELA consortium) were included in frontal photographs collection. CAN-
DELA consortium (https://www.ucl.ac.uk/biosciences/gee/candela/) has been used
to study physical appearance in Latin American for multiple studies, and details
could be seen in Ruiz-Linares et al.21. Ethical approval was obtained from the
Universidad Nacional Autónoma de México (México), Universidad de Antioquia
(Colombia), Universidad Perúana Cayetano Heredia (Perú), Universidad de Tar-
apacá (Chile), Universidade Federal do Rio Grande do Sul (Brazil) and University
College London (UK). All participants provided written informed consent. The
participate included in Supplementary Table 1 has also provided written informed
consent and signed Research Participant Release Form.

Replication samples: We examined replication in three independent data
samples: one Chinese, one European, and one African cohort (one SNP GWAS,
and one CNV GWAS).

The Chinese sample includes 5298 individuals32. This sample stems from the
National Survey of Physical Traits (NSPT) cohort (n= 2628) and the Taizhou
Longitudinal Study (TZL) cohort (n= 2670)31,67. The Taizhou LongitudinalT
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Study (TZL) was approved by the Ethics Committee of Human Genetic
Resources at the Shanghai Institute of Life Sciences, Chinese Academy of
Sciences (ER-SIBS-261410). The National Survey of Physical Traits (NSPT) is
the sub-project of The National Science & Technology Basic Research Project
which was approved by the Ethics Committee of Human Genetic Resources of

School of Life Sciences, Fudan University, Shanghai (14117). All participants
provided written informed consent.

The European replication sample is the discovery cohort examined in the
GWAS of Xiong et al.17. This sample includes 10,115 individuals of European
ancestry recruited in three countries (Netherlands, N= 3193; United Kingdom,

Fig. 4 Regional association plots for the three novel genomic regions showing strongest association with facial features in the CANDELA sample.
Panels a–c show on the left the association P-values for SNPs in each region (index SNP has been labeled). Annotated genes in each region are shown
underneath. To the right of each panel are shown the facial landmarks placed by Face++ (dark dots indicate the landmarks retained in ILD calculation).
Associated ILDs are indicated with colored lines (left face: line color reflects direction and magnitude of the association; right face: line color reflects
association P-value). The ILD with strongest association P-value is labeled.
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N= 4727 and United States, N= 2195). The summary statistics are publicly
available at https://doi.org/10.6084/m9.figshare.1029839668.

The African cohort is the discovery cohort examined in a CNV GWAS of Null
et al.33, and a SNP GWAS of Cole et al.5. This sample contains 3631 Bantu African
individuals aged from 3 to 21 from the Mwanza region of Tanzania. The summary
statistics are available at https://github.com/meganmichelle/CNV_FaceShape and
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000622.
v1.p1.

Genotype data. The genotype data examined here are those analyzed in previous
GWAS of the CANDELA sample1,2,22–24. Briefly, a blood sample was collected
from each volunteer and DNA extracted following standard laboratory procedures.
DNA samples were genotyped on the Illumina HumanOmniExpress chip including
730,525 SNPs. PLINK v1.90 was used for QC. Individuals and SNPs with >5%
missing genotypes, SNPs with <1% minor allele frequency, and individuals who
failed the X- or Y- chromosome sex checks were excluded. After these QC filters,
~650,000 SNPs and 5500 individuals were retained for further analyses. Human
genome reference assembly GrCh37/hg19 was used. SHAPEIT269 was used for pre-
phasing the chip genotype data, and IMPUTE270 was then used to impute variants
using the 1000 Genomes Phase 3 reference panel. Imputation led to 11,532,785
SNPs being available for association testing. Markers that are monomorphic in
1000 Genomes Latin American samples were excluded from imputation. Chip
genotyped SNPs having a low concordance value (<0.7) or a large gap between info
and concordance values (info_type0 – concord_type0 > 0.1), which might be
indicators of poor genotyping, were also removed, both from the imputed and chip
dataset. Imputed SNPs with imputation quality scores <0.4 were excluded. The
IMPUTE2 genotype probabilities at each locus were converted into best-guess
genotypes using PLINK (at the default setting of <0.1 uncertainty). SNPs with >5%
uncalled genotypes or minor allele frequency <1% were excluded. On the basis of
genome-wide SNP data, we estimated European, Native American and sub-
Saharan African ancestry proportions for each CANDELA individual (European
and Native American ancestries being strongly negatively correlated21).

Phenotyping. Frontal digital photographs were taken for each CANDELA
volunteer, at eye level, 1.5 m away, using a Nikon D90 camera (12,3 Megapixels
resolution) fitted with a Nikkor 50 mm fixed-focal-length lens21. The photographs
were anonymized for confidentiality, and stored on a secure cluster, where an API
script available from Face++ (https://www.faceplusplus.com), implementing a pre-
trained deep learning model was run. Face++ placed 106 landmarks on each
photograph (Supplementary Fig. 1), and provided a set of attribute values. Face
images with attribute values indicative of poor quality (e.g. blurriness, head rota-
tion represented through three head angles) were excluded. Individuals presenting
an outlier phenotype value (trait value lower or greater than the trait value average
for that sex ±three times the standard deviation) were also removed for each
phenotype. We focused on 34 landmarks corresponding mostly to well-defined
anatomical landmarks of common usage27,28 including previous GWAS studies
(Fig. 1a, Supplementary Table 2)1,8,10,17,29. Specifically, 28 out of 34 landmarks are
well-defined anatomical landmarks, while the other six landmarks (these are more
commonly referred to as “semi-landmarks” or “pseudo-landmarks” in the physical
anthropology literature2, but to simplify the presentation, are referred to collec-
tively as “landmarks” too) are on important locations such as the end of a contour,
which would allow us to capture facial features that we are interested in, including
face width and eyebrow size (Supplementary Table 2). Procrustes superimposition
was performed using MorphoJ71 and pairwise ILD calculation was carried out
using R72. Since Procrustes-adjusted landmarks coordinates were symmetrized,
some ILDs were identical. After removing 260 duplicates, 301 distances (labeled as
‘D’ followed by a number, Supplementary Table 3) were retained for the GWAS.

To evaluate the robustness of the Face++ landmarking, we examined the
accuracy of 32 landmarks which were either placed manually on a subset of 1610
photographs in a previous study1, or included in another commonly used
automatic face landmarks detection protocol Dlib25,26 on the same 1610
photographs (Supplementary Table 1). Median Euclidean distances and ICCs
between Face++ and manual landmark coordinates, and between Face++ and
Dlib landmark coordinates were obtained using Matlab73. Generally, the
consistency of Face++ landmarks compared to manual landmarks were similar to,
and for some landmarks better than Dlib, according to both ICC and pixel distance
(Supplementary Table 1). Also, Face++ provided more landmarks (106) than Dlib
(68), especially in anatomically important regions such as nasal bridge which have
been associated with genomic regions in previous studies1. Therefore, we eventually
chose Face++ beyond Dlib as our automatic landmarking tool.

Statistical genetic analysis. We used point biserial correlation coefficient (rpb) to
test the correlation of ILDs with gender and Spearman’s correlation coefficient (ρ)
to test the correlation of ILDs with age, BMI, genetic ancestry and head angles.

Relatedness between samples was estimated using KING-robust74 implemented
in PLINK v2.0, which is better suited to estimate relatedness in admixed
individuals. Only one individual from any related pair (with a threshold of
IBD > 0.1, excluding third degree relatives and higher) was retained. To estimate
the narrow-sense heritability (h2) for each trait, we computed a genomic

relationship matrix (GRM) combining genotype data for of all individuals for
which data for at least one trait was available. The GRM was calculated using
LDAK530 with default parameters. For each trait, h2 was estimated by fitting an
additive linear model with a random effect term whose variance was obtained from
the GRM, and added age, sex, BMI, 6 genetic PCs and head angles as covariates.

An LD-pruned set of 93,328 autosomal SNPs was used to estimate European,
African and Native American ancestry proportions using supervised runs of
ADMIXTURE75. Reference parental populations included in the ADMIXTURE
analyses consisted of Africans (101 Yoruba in Ibadan, Nigeria) and Europeans (107
Iberian Population in Spain) from 1000 Genomes Phase 3 and 125 selected Native
Americans76.

GWAS was conducted on the 301 ILD phenotypes using PLINK v1.9. Sex, age,
BMI, three head angles (yaw, pitch, roll) and the first 6 genetic PCs were included
as covariates. The Q-Q plots for all traits showed no sign of inflation, and the
genomic inflation factor (lambda) of all traits was close to 1 with the maximum
value of 1.074 and median value of 1.048, which indicate that appropriately
controls for population stratification had been taken care of. Q-Q plots and
Manhattan plots77 of all 301 ILDs are available via figshare https://doi.org/10.6084/
m9.figshare.1972891678.

Multiple testing in the primary GWASs was corrected by estimating the FDR
threshold with the Benjamini–Hochberg procedure. The FDR significance
threshold was calculated to adjust for the total number of tests (M), which is a
product of the total number of SNPs and the total number of phenotypes. Using
the classical BH-FDR method79 to correct for M= 1,342,638,980 tests, the adjusted
genome-wide significance threshold was 1.823 × 10−6. An alternative FDR
approach, used in Xiong et al.17 and developed in Li et al.79, is to calculate the
effective number of independent tests (Meff). For the ILD phenotypes, an
eigenvalue decomposition of their correlation matrix was used to calculate the
effective number of independent phenotypes, 31.53. For the SNPs, LD pruning was
used on the imputed genotypes to calculate the number of effective number of
independent SNPs, 1,062,091. Therefore the effective number of independent
statistical tests was their product, Meff= 33,484,596. With this approach, the
adjusted genome-wide significance threshold was very similar, 1.825 × 10−6. Both
are more lenient than the commonly used GWAS genome-wide significance
threshold (5 × 10−8). Therefore, we continued to use the conventional GWAS
threshold 5 × 10−8 as the genome-wide significance threshold, as this will satisfy
the conventional threshold as well as the FDR criteria. However, the genomic
regions whose P-value are in between the FDR threshold (1.823 × 10−6) and the
commonly used GWAS threshold (5 × 10−8) were presented in Supplementary
Table 8.

To group SNP-based GWA results across all analyses based on linkage
disequilibrium (LD) between SNPs, we conducted clumping in PLINK v1.9 on the
combined output file of all GWA analyses. We used 0.1 for LD threshold, and
1000 Kb for the physical distance threshold, which in total resulted in 62 clumps.
To further determine if each clump is independent, we conducted conditioned
analyses on the signals physically close to each other. All covariates used in the
original GWA analysis were also added in the conditional GWAS. All signals with a
conditioned P-value greater than 5 × 10−8 were merged with their neighboring
signals.

Conditional GWAS was also carried out to test if a signal detected here had
been reported previously. We firstly picked out signals that fall on the chromosome
bands that have been reported. Amongst 42 regions we detected, 16 fell on an
entirely new chromosome band that was not reported to be associated with facial
features. We then have conducted the conditional analysis on totally 93 SNPs
across 26 regions. We gathered all reported SNPs in each chromosome band and
added those reported SNPs into the regression models of corresponding SNPs of
the same chromosome band in our results. If P-value obtained was above the
suggestive significant threshold (1 × 10−5), this signal would be regarded as a
reported signal, and conversely, it would be regarded as a new signal. Details of the
results from conditional analyses could be seen in Supplementary Table 9.

In the replication analysis, 76 P-values were available for 27 novel associated
regions across 4 separate datasets. After correction of multiple testing with BH-
FDR, the combined significance threshold in the replication cohorts was 0.0293.

Genome-wide association analyses and correction for population stratifica-
tion. To verify that population stratification is properly accounted for in our
GWAS, we tested several alternative approaches and models (Supplementary
Figs. S8–S10):

i. The primary GWAS model described above, implemented using PLINK and
including the SNP genotype and genetic PCs (representing whole-genome
ancestry);

ii. The same GWAS model using PLINK as in (i) but without genetic PCs, in
order to assess the extent of inflation when no adjustment for population
structure is included in the model;

iii. A mixed-effect regression model implemented in GCTA80, which uses a
GRM (calculated as above using LDAK) instead of genetic PCs;

iv. An extension of the GCTA mixed effects model, implemented in
GENESIS81,82, using both a relatedness matrix (estimated using KING-
robust to model recent kinship), and genetic PCs to model population
substructure;
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v. A model proposed by Atkinson et al.83 (TRACTOR) which instead of using
the SNP genotypes directly, uses the SNP coding on three different local
ancestry backgrounds. We examined three models: one using only genetic
PCs (i.e. global ancestry), one using only local ancestry (obtained here by
RFMix), and one with both local ancestry and genetic PCs as covariates.

vi. An alternative to TRACTOR called SNP1 (proposed by Hou et al.64), which
for each SNP genotype uses the local ancestry estimates at that location as
covariates. We tested two models: one using both local ancestry and genetic
PCs as covariates, and one only using local ancestry but not PCs;

We first contrasted GWAS results for the 148 facial distances showing
significant association in the primary PLINK analyses. We ran GCTA and
GENESIS on the exact same imputed genome-wide dataset used in the PLINK
analyses. For SNP1 and TRACTOR analyses were performed only on the chip data,
as local ancestry estimates are only available for genotyped (not imputed) data. To
compare results across all analysis approaches and models, the genomic inflation
factor (lambda) was calculated for each GWAS using the chip SNP data
(Supplementary Fig. 8 and Supplementary Table 10). Examining the distribution of
lambda values, we observe that, in the absence of correction for population
stratification (PLINK with no PCs, nor GRM, nor local ancestry), there is a marked
inflation (Supplementary Fig. 8). However, we find that with any form of whole-
genome-based adjustment (with PLINK, GCTA or GENESIS) this inflation is
properly controlled, as the lambdas are very close to 1 (as previously
observed64,74,84). Supplementary Fig. 8 also shows that local ancestry correction (by
itself) is not sufficient to correct for stratification in both the SNP1 and TRACTOR
analyses (max lambda being 1.7 and 2.4 respectively). Furthermore, genetic PCs on
their own are also not sufficient to correct for stratification using TRACTOR
(median lambda of 28.5). The best population stratification correction for SNP1
and TRACTOR is obtained when both genomic PCs and local ancestry are
incorporated in the models (and we focused on these models in comparisons
below).

We next compared -log(P-values) for 42 index SNPs identified in the primary
PLINK analyses (across the 148 associated distances), with the values obtained for
these SNPs using GCTA and GENESIS. These three approaches produce very
similar results, a scatterplot of -log(P-values) showing points that lie close to the
diagonal (Supplementary Fig. 9A), matching previous findings24,64,82,84,85. We
could not perform a similar comparison involving SNP1 or TRACTOR, since
certain of the index SNPs identified in the primary PLINK analyses were imputed.
We therefore also tested 151 chip-genotyped SNPs (that are significant and in LD,
r2 > 0.1, with the 42 PLINK index SNPs) using GCTA, GENESIS, SNP1, and
TRACTOR (Supplementary Fig. 9B). We observe that SNP1 and TRACTOR often
have a reduced power, relative to the three models incorporating a global ancestry
correction (PLINK, GCTA, and GENESIS). This is seen, for instance, for the well-
established EDAR1,2,8 and RUNX21,2,4,8,11,15,55,86 gene regions (these SNPs are
highlighted in Supplementary Fig. 9B). To further compare power across PLINK,
GCTA, GENESIS, SNP1, and TRACTOR, Supplementary Fig. 10 shows violin plots
for the six well-established regions that include genotyped associated SNPs in the
CANDELA data (taken from Table 1: EDAR1,2,8, RUNX21,2,4,8,11,15,55,86,
SLC24A52, FOXD131,87, GLI31,15,88,89, and DCHS2/SFRP21,2,4,15,90). In all six cases,
the global ancestry-corrected models (PLINK, GCTA, and GENESIS) have the
highest power, followed by SNP1, while TRACTOR has the lowest power. This is
particularly noticeable for EDAR and SLC24A5, two instances in which the index
SNPs have fully differentiated allele frequencies between populations participating
in the admixture (i.e. alternative alleles are fixed in Europeans, Native Americans
or Africans). In these two cases, the local Native American ancestry component is
nearly identical to the SNP genotype, leading to SNP1 and TRACTOR suffering
from high collinearity and resulting in a nearly total loss of power for these two
approaches (Supplementary Fig. 10A, C).

Altogether, the analyses above agree with theoretical and simulation
studies64,74,84, which show that, in the absence of close kinship, genetic PCs are
sufficient to account for population substructure in GWAS of admixed
populations. In such cases, including genetic PCs in the analyses (as implemented
in PLINK) produce identical results to using a mixed-effect regression model,
which incorporate a genetic relatedness matrix instead of genetic PCs (as
implemented in EMMAX85 or FastLMM24). Regarding local ancestry correction
approaches, other than collinearity, the drop of power probably stems from effect
sizes generally not being sufficiently different between ancestry components to
reach genome-wide significance in each ancestry component65. Since TRACTOR
has three degrees of freedom, with three ancestry-specific SNP components, this
approach can be more powerful only when there is substantial heterogeneity in the
effect size of SNP across ancestry components66. In our case, the trade-off between
the scarcity of variants with ancestry-specific effect sizes and that of variants with
effect size shared across ancestries appears to be a handicap for TRACTOR.

Mouse analyses. We reanalyzed genome-wide SNP and craniofacial data obtained
for a published GWAS in outbred mice34. Coordinates for 44 landmarks (17 pairs
of symmetric landmarks and 10 landmarks on the median plane), along with
genotypes at 70k SNPs for 692 mice were kindly provided by Luisa Pallares. We
performed a full generalized Procrustes analysis with object symmetry91, and the
phenotypic variation was modeled on the basis of the 67 non-null PC. We applied a
multivariate mixed model not used in the original analysis of these data34. The

original mouse GWAS was done on each shape PC34. However, this approach has
maximum power when an allele effect is sufficiently strong to structure the overall
shape variation. With geometric morphometrics on skull shape, this is unlikely and
a multivariate GWAS is preferable. Such an approach is nevertheless computa-
tionally challenging when a linear mixed model (mvLMM) based on the genomic
relatedness matrix is used on a very high dimensional trait such as skull shape (here
67 non-null dimensions). We therefore approximated this mvLMM by modeling
the covariance matrices of this linear mixed model with two blocks (including skull
centroid size as covariate). The first block models the genetic and environmental
covariances of the first 10 PCs (62% of the total shape variance) altogether, while
only the variances for the next 57 traits were modeled as the second block (i.e. the
covariances among these PCs as well as with the other block were set to 0). This
approach gains from the modeling of the genetic correlations between the main
PCs while maintaining a lower dimensionality cost than in the full multivariate
model. Association between a SNP and craniofacial shape was tested based on Pillai
trace statistics obtained from the multivariate regression between the corrected
allele dosage and corrected PC scores. A FDR was computed based on 100 per-
mutations of corrected PC scores following the approach of Nicod et al.92 and used
to identify SNPs exceeding a FDR threshold of 5%.

Neanderthal introgression analyses. These analyses focused on a 1Mb window
around the ATF3 gene in 1q32.3. Imputed genotypes of all samples for 4311 SNPs
in this region were first phased using SHAPEIT4 (with default parameters). The
haplotypes obtained were re-phased using low-density chip-genotype data pre-
viously phased using RFMix (v1)93. This two-step-phasing is expected to be more
accurate and also aligns phases with the local ancestry estimates obtained by
RFMix, hence allowing to determine on which ancestral background the archaic
tracts are found. The rephased data was merged with data for “Altai” Neanderthal
and the 108 YRI samples from 1000GP3 (used as archaic and modern reference
data, respectively) and then filtered. In brief, variants from the 1Mb window were
retained if they: (i) had a read depth ≥20 in “Altai” Neanderthal, (ii) survived the
PASS filter in both the “Altai” Neanderthal and 1000GP3 VCFs, (iii) the same
ancestral and derived alleles were reported in the two VCFs, and (iv) the ancestral
allele is present in our data. This filtering resulted in 3231 SNPs being retained. The
introgression scan, on the filtered data, was carried out using the hidden-Markov
model implemented in admixtureHMM41, considering only tracts called with >99%
confidence and that were >10 Kb. This identified 798 introgression tracts, with an
average length of 127 Kb.

We performed association testing through (archaic) admixture mapping, that is,
we first recoded genotypes based on the number of archaic alleles (0,1 or 2) and
merged consecutive SNPs with a similar distribution of genotypes across
individuals, allowing a maximum of 1% genotype change across individuals from
one SNP to the next. Filtering for a minimum archaic tract frequency of 1%, led to
a total of 103 introgressed segments being retained. We then tested for phenotypic
association using the same linear model as for the GWAS. The
Benjamini–Hochberg’s FDR significance threshold equals 4.9 × 10−4.

Neanderthal and modern human skull comparison. Distance D117 (between
landmarks 12/nasion and 18/subnasal) measured in the CANDELA individuals
corresponds to the cranial distance measured between nasion and subspinale
landmarks (i.e. nasal height, in Howells’ system of cranial measurement94). We
extracted nasal height from the measurements obtained by Weaver and Stringer95

on 10 Neanderthal specimens (Amud 1, Forbes’ Quarry, Guattari 1, La Chapelle-
Aux-Saints, La Ferrassie 1, Saccopastore 1 and 2, Saint-Césaire, Shanidar 1, Sha-
nidar 5). For comparison with modern humans, we extracted nasal height mea-
sured in skulls from 484 Africans, 317 Europeans and 389 Native Americans (males
and females were balanced for each region), from Howells’ online database (http://
web.utk.edu/~auerbach/HOWL.htm)94. To illustrate the nasal height difference
between modern human and Neanderthal skulls, we compared a Native American
and the Amud 1 Neanderthal (41Kya). The 3D image of the Native American skull
was obtained from the collection of the División de Antropología, Museo de La
Plata, Argentina (skull from Chubut Province, DA-MLP-1082). The Amud 1 3D
image was obtained from the MorphoSource repository (www.morphosource.org):
Darwin Core triplet: du:ea:CCC08 Homo neanderthalensis; ID Media 000005749:
Cranium [Mesh] [Etc]. MorphoSource Archival Resource Key (ARK) identifier:
ark:/87602/m4/M5749.

Annotation of SNPs in FUMA (functional mapping and annotation). A subset
of GWAS summary statistics including only significant SNPs (P < 5 × 10−8) and a
pre-defined lead SNP list obtained after clumping in Plink v1.9 were loaded to
FUMA44. SNP2GENE was processed to identify independent SNPs (r2 < 0.6) and
candidate SNPs. Candidate SNPs are the SNPs in LD of one of the independent
significant SNPs, which includes non-GWAS tagged SNPs extracted from 1000
genomes reference panel. Implemented tool ANNOVAR was used to annotate the
functional consequences on gene function on the independent SNPs and candidate
SNPs. The website indicates that ANNOVAR uses all annotated transcripts in
Gencode collection lifted up to hg19, and has its own prioritization criteria to
report the most deleterious function. Only prioritized annotations are used for
those SNPs.
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Gene Ontology (GO) analysis and transcription patterns in newly associated
regions. We used Metascape (http://metascape.org/) to carry out a GO analysis96

of genes nearest to the index SNPs of the novel associated regions (if an index SNP
was in two genes, both genes were retained in the analysis) (Supplementary
Table 4). To examine patterns of transcription in the vicinity of index SNPs for the
novel regions identified here, we contrasted the CNCC RNA-seq data from the
study of Prescott et al.45 to that obtained by the ENCODE46 project for 318
different cell types (Supplementary Table 11). Of the 33 newly associated regions,
overlapping transcripts in the CNCC RNAseq data have been reported for 26, and
only these could therefore be tested. For consistency with the CNCC data, we
applied variance-stabilizing transformation (VST) to the ENCODE data (using
DESeq2). The higher transcription levels in CNCCs, relative to the ENCODE data,
was tested using a Student’s t test, with a Benjamini–Hochberg’s FDR threshold
(p < 0.034).

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw genotype or phenotype data cannot be made available due to restrictions imposed by
the ethics approval. Summary statistics obtained during the current study have been
deposited at GWAS central and is available at the URL http://www.gwascentral.org/
study/HGVST5029. All produced Manhattan plot and Q-Q plot are available via figshare
https://doi.org/10.6084/m9.figshare.1972891678. Supplementary Tables can be found in
the Supplementary Data file. All other data are available from the corresponding author
on reasonable request. Public data resources used: The Altai Neanderthal genome was
downloaded from the website of the Max Planck Institute for Evolutionary Anthropology
at http://cdna.eva.mpg.de/neandertal/altai/AltaiNeandertal/VCF/. European cohort
summary statistics: https://doi.org/10.6084/m9.figshare.1029839668. For the R package
FastMan used to draw the Manhattan plot in Fig. 1 and Q-Q plots in Supplementary
Materials, see https://github.com/kaustubhad/fastman.
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