Coordinated circRNA Biogenesis and Function with NF90/NF110 in Viral Infection

Highlights
- Genome-wide siRNA screening identifies immune factors involved in circRNA formation
- NF90/NF110 promote back-splicing in the nucleus and also are components of circRNPs
- Nuclear export of NF90/NF110 upon viral infection leads to reduced circRNA levels
- NF90/NF110 released from circRNPs bind to viral mRNAs for antiviral immune response

Authors
Xiang Li, Chu-Xiao Liu, Wei Xue, ..., Run-Wen Yao, Li Yang, Ling-Ling Chen

Correspondence
liyang@picb.ac.cn (L.Y.), linglingchen@sibcb.ac.cn (L.-L.C.)

In Brief
Li et al. use genome-wide siRNA screening and an efficient circRNA expression reporter to identify factors involved in circRNA formation. They find that, upon viral infection, circRNA biogenesis and function are regulated by double-stranded RNA-binding domain containing immune factors NF90/NF110.
Coordinated circRNA Biogenesis and Function with NF90/NF110 in Viral Infection

Xiang Li,1,4 Chu-Xiao Liu,1,4 Wei Xue,2,4 Yang Zhang,1 Shan Jiang,1 Qing-Fei Yin,1 Jia Wei,2 Run-Wen Yao,1 Li Yang,2,3,∗ and Ling-Ling Chen1,3,5,∗

1State Key Laboratory of Molecular Biology and Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology
2Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences
3University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
4School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
5Lead Contact
6Correspondence: liyang@picb.ac.cn (L.Y.), linglingchen@sibcb.ac.cn (L.-L.C.)

SUMMARY

Circular RNAs (circRNAs) generated via back-splicing are enhanced by flanking complementary sequences. Expression levels of circRNAs vary under different conditions, suggesting participation of protein factors in their biogenesis. Using genome-wide siRNA screening that targets all human unique genes and an efficient circRNA expression reporter, we identify double-stranded RNA-binding domain containing immune factors NF90/NF110 as key regulators in circRNA biogenesis. NF90/NF110 promote circRNA production in the nucleus by associating with intronic RNA pairs juxtaposing the circRNA-forming exon(s); they also interact with mature circRNAs in the cytoplasm. Upon viral infection, circRNA expression is decreased, in part owing to the nuclear export of NF90/NF110 to the cytoplasm. Meanwhile, NF90/NF110 released from circRNP complexes bind to viral mRNAs as part of their functions in antiviral immune response. Our results therefore implicate a coordinated regulation of circRNA biogenesis and function by NF90/NF110 in viral infection.

INTRODUCTION

Over ten thousand different circular RNAs (circRNAs) from back-spliced exons have been recently archived across various cell lines, tissues, and species (Dong et al., 2016; Rybak-Wolf et al., 2015; Zhang et al., 2016a). Although generally expressed at low levels, the expression of some circRNAs has been reported to be as high as or even higher than that of their linear counterparts from the same gene loci (Rybak-Wolf et al., 2015; Salzman et al., 2013; You et al., 2015; Zhang et al., 2016b). Back-splicing is inefficiently catalyzed by the spliceosome (Starke et al., 2015; Zhang et al., 2016b) and can be facilitated by paired intronic sequences that juxtapose circularized exon(s)

(Chen, 2016; Ivanov et al., 2015; Liang and Wilusz, 2014; Yang, 2015; Zhang et al., 2014). Among these paired sequences, orientation-opposite repetitive elements play important roles in promoting back-splicing in general and contribute to alternative back-splicing selection (Dong et al., 2016; Zhang et al., 2016a, 2014). The majority of human circRNAs are back-spliced from exons with inverted repeated Alu (IRA/u) across their flanking introns (Dong et al., 2016; Zhang et al., 2016a, 2014). Intriguingly, although having the same cis-elements, expression levels of circRNAs from the same loci are diverse in different cell lines and tissues (Dong et al., 2016; Rybak-Wolf et al., 2015; Salzman et al., 2013; Zhang et al., 2016b), suggesting the involvement of other layers of regulation in circRNA expression. Recent studies have revealed that fast-transcribed genes tend to produce more circRNAs (Zhang et al., 2016b) and that multiple RNA-binding proteins (RBPs) can regulate back-splicing and circRNA biogenesis (Ashwal-Fluss et al., 2014; Conn et al., 2015; Ivanov et al., 2015; Kramer et al., 2015; Rybak-Wolf et al., 2015).

It is well established that RBPs are involved in mRNA life cycle essentially in every step, from the initial stage of transcriptional production and processing in the nucleus, to the functional engagement and later on degradation in the cytoplasm (Moore, 2005). It should be the case for circRNAs as well. Recent studies have revealed several hundred known and previously unknown RBPs in human genomes (Castello et al., 2012; He et al., 2016). However, RBPs associated with circRNA processing and function remain to be explored.

Here, we apply a genome-wide siRNA screening that targets all human unique genes with an efficient circRNA expression reporter for profiling proteins that are involved in circRNA processing and function. We identified that over 100 RBPs have the potential to interfere with circRNA expression with this screening, including multiple factors related with host immune responses, such as the human interleukin enhancer binding factor 3 (ILF3). The ILF3 gene produces several isoforms of nuclear factor 90 (NF90) due to alternative splicing and alternative polyadenylation (Patino et al., 2015). In this study, we uncovered that NF90 and its 110 isoform NF110 (NF110) could promote circRNA production by stabilizing intronic RNA pairs in the nucleus and that they were also components of circRNPs in the cytoplasm. Upon viral infection,
Figure 1. Identification of Factors Involved in circRNA Biogenesis

(A) A cell-based circRNA expression reporter system. An inducible circRNA expression reporter cassette, containing a pair of complementary sequences (orange arrows) that are able to form RNA pairing structure across introns (Zhang et al., 2016b) flanking the mCherry exon, was stably integrated into the genome of HeLa cells. See main text for details.

(legend continued on next page)
NF90/NF110 were rapidly exported to the cytoplasm, and correspondingly nascent circRNA expression was decreased. Meanwhile, the de-association of NF90/NF110 from circRNPs in the cytoplasm allowed their binding to viral mRNAs to inhibit viral replication. These findings suggest immune response factors in circRNA biogenesis and the involvement of circRNAs in viral infection.

RESULTS

A Dox-Inducible circmCherry-Expression System for Genome-wide siRNA Screening that Targets All Human Unique Genes

To identify proteins that could potentially affect circRNA biogenesis, we used a Dox-inducible circmCherry expression vector that was stably expressed in HeLa cells for genome-wide siRNA screening that targets all human unique genes. This Dox-circmCherry expression vector efficiently produces a circRNA from the reverted mCherry sequence (circmCherry) by back-splicing within a split EGFP gene (Zhang et al., 2016b). An IRES sequence and an ATG start codon were inserted into the middle of the reverted mCherry mRNA sequence, allowing mCherry protein to be translated only from the back-spliced circmCherry (Figure 1A). The egfp mRNA could be also produced by joining the split EGFP sequences together by canonical splicing to express EGFP protein. Thus, the canonical splicing and back-splicing work together to allow the expression of EGFP and mCherry in response to Dox addition (Figures 1A and 1B).

The great majority of cells have both EGFP produced from canonical splicing and mCherry produced from back-splicing (Figures S1A–S1C). siRNAs targeting the back-spliced junction site of circmCherry (blue arc line in Figure 1A) could efficiently reduce mCherry expression but not the linear egfp mRNA splicing and expression (Figures S1A, S1D, and S1E). This observation indicated that the fluorescent densities between mCherry and EGFP did not interfere with each other. A fused egfp and mCherry linear RNA could be alternatively produced (Figure 1A, right bottom). This fused egfp and mCherry linear RNA did not contribute to mCherry or EGFP expression, confirmed by no fluorescent reduction by the treatment of siRNAs (pink thick line in Figure 1A) that target the junction site between the first half egfp and the reverted mCherry (Figures S1F and S1G). Together, this Dox-inducible circRNA expression system would allow us to perform the genome-wide siRNA screening (Figure 1C) for identification of potential candidates that regulate circRNA production without affecting host linear mRNAs.

The human ON-TARGETplus (OTP) siRNA libraries were reverse transfected into HeLa cells that stably express Dox-inducible circmCherry reporter in multiple 384-well plates. A smart pool combined four different OTP siRNAs that target different regions of the same mRNA to ensure effective silencing of the intended target. Forty-eight hours (hr) after the siRNA transfection, Dox was added to induce the expression of EGFP and mCherry. Fluorescence signals of EGFP and mCherry were monitored 24 hr post the Dox treatment to ensure that the fluorescence change was due to the Dox-inducible “nascent” mCherry and EGFP produced within these 24 hr. Of note, such a time window is important because circRNA is highly stable (Zhang et al., 2016b), and a prolonged Dox treatment may lead to the reduced likelihood to uncover RBPs that control nascent circRNA generation. The whole-genome screening was carried out independently in duplicates. The distribution of fluorescence densities of all screened genes in duplicates was highly correlated (Figure 1D; Table S1).

Identification of Splicing Regulators and Antiviral Immune Factors in circRNA Biogenesis

We then set up an analysis pipeline (Figure 1E) to identify RBPs that may interfere with circRNA biogenesis. We excluded genes that were not expressed in HeLa cells and genes that also affected EGFP expression in the screening and only selected candidates that influenced the mCherry fluorescence with at least a 1.5-fold change (Figure 1E). We applied this relatively low threshold partially because of the fact that the efficiency of back-splicing and translation for a circRNA was expected to be lower than that for a linear RNA (Wang and Wang, 2015; Zhang et al., 2016b). In total, knockdown (KD) of 1,053 and 787 genes by human OTP siRNA libraries was found to reduce or enhance mCherry expression with the current cutoff, respectively (Figure 1E; Table S1). Although this screening has the potential to identify factors that affect the life cycle of circmCherry RNA and mCherry protein, we aimed to focus on potential RBP candidates in the current study, and 103 such proteins were uncovered by gene ontology (GO) with the database for annotation, visualization, and integrated discovery (DAVID) (Huang da et al., 2009).
Figure 2. NF90 and NF110 Are Associated with circRNA Biogenesis

(A) Identification of RBPs interacting with perfect dsRNA duplexes in vitro. Left, a schematic drawing of the biotin-labeled inverted repeated egfp fragments (IRegfps, perfect duplexes) and single egfp fragment made from in vitro transcription (IVT). Right, identification of IRegfps-binding proteins in vitro. Nuclear extracts of PA1 cells were incubated with individual biotin-IRegfps or biotin-egfp, followed by anti-biotin pull-down. Proteins enriched in the biotin-IRegfps, but not biotin-egfp controls, revealed by mass spectrometry (MS) were further analyzed. NF90 and ADAR1 (red dots) were top two proteins identified to interact with IRegfps.

(B) Identification of RBPs interacting with imperfect dsRNA duplexes in vitro. Left, a schematic drawing of the biotin-labeled inverted repeated Alu elements (IRAlus, imperfect duplexes) or single Alu made from IVT. Right, identification of IRAlus-binding proteins in vitro. See (A) for details. NF90 and ADAR1 (red dots) were top two proteins identified to interact with IRAlus.

(C) Interaction of NF90/NF110 with RNAs. The biotinylated RNA pull-down assays in (A) and (B) followed by western blotting (WB) with antibodies for anti-NF90/ NF110 and anti-ADAR1. ADAR1 (both its p110 and p150 isoforms) serves as positive controls for dsRNA-pull-down assays.

(legend continued on next page)
Further analyses revealed that 30 from 103 RBPs have reported roles in splicing regulation, 16 are involved in immune responses, 11 have helicase activities, and 7 exhibit nuclease activities (Figures 1F, 1G and S1H). These factors might influence the back-splicing efficiency, circRNA stability, export, and circRNA translation of this reporter, and then subsequently affected mCherry expression (Figure 1A). Random selection of several target RBPs that have reported roles in splicing regulation (Figure S1I) and innate immune responses (Figures 1H–1J and S1J) by shRNA treatment further verified outcomes from genome-wide screening. In all validations, we found reduced circmCherry expression, after normalized to linear egfp mRNAs (Figures 1H–1J, S1I, and S1J), implying that these factors are more likely to affect circRNA processing.

NF90/NF110 Affect circRNA Formation Genome-wide

Indeed, additional trans-factors must participate in circRNA biogenesis because the expression of circRNA in the same locus varies among different cell lines and tissues (Dong et al., 2016; Salzman et al., 2013; Zhang et al., 2016a). Splicing regulators were anticipated to be one group of factors involved in back-splicing (Figures 1G and S1H), as suggested by recent studies (Ashwal-Fluss et al., 2014; Conn et al., 2015). Surprisingly, a group of immune response factors (Figures 1F and 1G) also appeared to affect circRNA biogenesis (Figures 1H–1J and S1J). Among them, ILF3 was particularly interesting to us. NF90/ NF110 produced from the ILF3 gene (Patifio et al., 2015) were reported to be required for efficient host immune defense (Harashima et al., 2010; Isken et al., 2003; Pfeifer et al., 2008). In our studies, NF90 was also identified from an independent set of experiments that aimed to seek double-stranded (ds) RNA-associating proteins that may directly participate in circRNA formation (Figures 2A and 2B, Table S2).

The biotin-labeled RNA pull-down assays revealed that NF90 and human ADAR1 could be repeatedly precipitated by dsRNA duplexes (dsRNAs) formed from either inverted repeated egfp fragments (IRegfps) (Figure 2A) or IRAus (Figure 2B), but not single-stranded RNAs (ssRNAs), as revealed by mass spectrometry (MS). The dsRNA-binding protein ADAR1 (Chen et al., 2015) was reported to suppress circRNA production (Ivanov et al., 2015; Rybak-Wolf et al., 2015). NF90/NF110 were known to have dsRNA-binding activity as well (Urcuqui-Inchima et al., 2006). Western blotting (WB) further confirmed MS results. NF90, NF110, and ADAR1 all strongly bound to dsIREgfps and IRAus (Figure 2C). Interestingly, compared to NF90, NF110 also appeared to bind single Alu sequence (Figure 2C). These results indicated that NF90/110 could directly regulate back-splicing by associating with transient dsRNAs formed across circle-forming exons.

We then examined the effect of NF90 and NF110 on circRNA formation in cells. The polyadenylated (polyA+) RNAs collected from scramble, NF90, or NF110 shRNA-treated stable KD HeLa cells (Figure 2D) followed by RNA-seq revealed that the expression of the great majority of genes remained unchanged upon NF90 or NF110 depletion (Figures S2A and S2B; Table S3). The non-polyadenylated and ribosomal-RNA-depleted RNAs (polyA+/Ribo−) were also collected from the same cells and were subjected to deep sequencing (Figure S2C). After it was normalized to its linear isoform, we found that about 250 high-confidently expressed circRNAs (with reads spanning back-splicing junction [BSJ] ≥ 5) in NF90 or NF110 stable KD cells (Figure S2D). The expression of 43% of high-confidence circRNAs was reduced, of about 30% was not changed, and of about 20% was increased, upon NF90 or NF110 depletion (Figure 2E; Table S4). Importantly, about 85% (~213/251 or 255) of these high-confidence circRNAs could be detected in both NF90 or NF110 stable KD cells (Figure S2E), and 50% of these overlapped circRNAs (213) showed reduced expression in each KD (Figure S2F). Furthermore, among these downregulated circRNAs, 70% were detected in both samples (Figure S2G), suggesting that NF90 and NF110 can target the same circRNA-producing genes. Random selection of circRNAs by RT-qPCR further confirmed this genome-wide analysis (Figures 2F, 2G, and S3).

It is known that the final mRNA levels are balanced between their production and degradation (Rabani et al., 2011). However, for many circRNAs, the detection of their expression at the steady-state level is largely due to accumulation (Zhang et al., 2016b). Thus, the nascent circRNA level is more accurate than the steady-state level to access the effect of trans-factors on circRNA formation. We then asked whether NF90/NF110 could affect nascent circRNA production. Indeed, it was the case. Stable KD of NF90 or NF110 reduced the level of newly back-spliced...
Please cite this article in press as: Li et al., Coordinated circRNA Biogenesis and Function with NF90/NF110 in Viral Infection, Molecular Cell (2017), http://dx.doi.org/10.1016/j.molcel.2017.05.023
circRNAs (Figures 2H and S3B). Overexpression of Flag-tagged proteins (Flag-NF90 or Flag-NF110) also enhanced the production of nascent circRNAs, but not that of pre-mRNAs (Figures 2I and S3D). Such a positive regulation of NF90/NF110 on circRNA back-splicing was also confirmed by northern blotting (NB) with one abundant circRNA, circPOLR2A (Figure 2J).

Since both NF90 and NF110 likely promoted the same circRNA generation (Figures 2F–2J, S2G, and S3A–S3C), we then asked whether a double depletion of NF90/NF110 could further enhance this effect. Interestingly, we found that the stable double KD of NF90/NF110 cell lines could not be developed because such KD led to severe cell death (data not shown). Transient KD of both NF90/NF110 (Figure S3D) followed by the examination of steady-state (Figure S3E) and nascent (Figure S3F) levels of circRNA expression revealed a similar level of reduction when compared to those in NF90 or NF110 single KD cells (Figures 2G and 2H). Together, these results strongly suggested that NF90/NF110 could act as trans-factors to regulate nascent circRNA processing and that they exhibited a similar role in facilitating back-splicing.

NF90/NF110 Promote circRNA Processing by Stabilizing Flanking Intronic RNA Pairs

It is well accepted that the orientation-opposite intronic complementary sequences flanking circularized exons promote circRNA biogenesis by forming RNA duplexes that juxtapose the splice sites (Chen, 2016). In vitro RNA precipitation assays have suggested that NF90/NF110 could strongly bind to dsRNA duplexes (Figures 2A and 2B). Within cells, nascent RNA immunoprecipitation assays (RIP) allowed to capture nascent pre-mRNAs associated with NF90/NF110 further revealed the interaction of NF90/NF110 with pre-mRNAs of the circRNA-forming POLR2A and DHX34 genes (Figure 3A). Of note, the formation of circPOLR2A was known to be dependent on flanking intronic sequences (Zhang et al., 2014), and circDHX34 also contained such cis-elements (see below, Figure S3E). We then speculated that NF90/NF110 might directly bind to circRNA-flanking cis-complementary sequences and stabilize RNA pairs to stimulate exon circularization.

To test this idea, we characterized the in vivo binding pattern of NF90 at the single nucleotide resolution by performing the individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP). The iCLIP was carried out with anti-Flag antibodies in Flag-NF90 stable expressing HeLa cells in duplicates (Figures S4A–S4C). It has been shown that NF90 is an AU-rich element (ARE)-binding protein that can bind to the ARE-containing 3′ UTRs of mRNAs (Kuwano et al., 2010; Pei et al., 2008). The iCLIP confirmed the binding of NF90 to 3′ UTRs of mRNAs with a preference to binding AREs (Figures S4D and S5A). Further analysis revealed that 6.6% of Flag-NF90 iCLIP reads were located in 3′ UTRs and that 91.7% were in introns (Figure S5B). Although normalization to the total length of introns and 3′ UTRs showed a higher density of Flag-NF90 binding to 3′ UTRs (Figure S5B), the striking overall distribution of NF90-binding sites in introns suggests a previously underestimated role of NF90 in pre-mRNA processing.

Remarkably, NF90 selectively bound to flanking introns of circRNA-containing exons (Figure 3B). About 15% of the circRNA-forming exons were flanked by NF90 iCLIP-binding sites, and the number was up to 29% among highly expressed circRNAs. In contrast, only 3% of introns flanking randomly selected non-circRNA-forming exons contained NF90 iCLIP-binding sites (Figure 3B). Motif analyses revealed that Flag-NF90 preferred to bind clusters of A-rich or U-rich sequences (Figure 3C), most of which
Figure 4. Cytoplasmic Export of NF90/NF110 upon Viral Infection Correlates with Decreased circRNA Expression

(A) NF90 and NF110 were translocated to the cytoplasm upon poly(I:C) treatment. The subcellular localizations of NF90 and NF110 were assessed by WB. The relative abundance of tubulin and histone H3 in cytoplasmic or nuclear fractions indicated a successful subcellular fractionation.

(B) NF90- or NF110-associated nascent pre-mRNAs were significantly decreased in cells upon poly(I:C) stimulation. HeLa cells stably expressing Flag-NF90 or Flag-NF110 were treated with poly(I:C) for 6 hr, followed by nascent RIP (Figure 3A). Bar plots represented the normalized nascent pre-mRNAs immunoprecipitated by anti-Flag over anti-IgG antibody, respectively, under each examined condition.

(C and D) CircRNA formation was rapidly reduced upon poly(I:C) stimulation (C) or VSV infection (D) in HeLa cells. Nascent RNAs were collected 6 hr of poly(I:C) transfection or 24 hr of VSV infection and quantitated with RT-qPCR by normalizing to each corresponding pre-mRNA. Primer sets were illustrated in Figure 2F.

(E) A genome-wide alteration of nascent circRNA production upon a rapid poly(I:C) treatment. Top, a schematic drawing to illustrate the collection of nascent RNAs upon poly(I:C) treatment. Bottom, nascent RNA-seq followed by the identification of nascent circRNAs (Zhang et al., 2016b) revealed a general reduction of nascent circRNAs upon poly(I:C) treatment.

(F) Reduction of nascent circRNA production upon poly(I:C) treatment. The production of over 83% high-confidence circRNAs was reduced upon poly(I:C) treatment.

(legend continued on next page)
were located to Alu in introns (Figure S5C) and could potentially form RNA pairs surrounding circRNA-forming exons. Consistent with this observation, counting the number of NF90-binding sites to 3' UTR Alus or intronic Alus revealed a dramatic enrichment of its distribution to intronic Alus (92% intronic Alus versus 7.1% 3' UTR Alus) (Figure 3D, left). Normalization to total lengths of NF90-binding Alus in different genomic regions revealed a comparably high NF90-binding intensity in introns and 3' UTRs (Figure 3D, right). One example of circDHX34 was shown to illustrate our analysis (Figure 3E). Of note, while the expression of the DHX34 gene remained largely unchanged, circDHX34 was reduced ~2-fold upon the depletion of NF90 or NF110.

Together, these results clearly indicated that the binding of NF90/NF110 to dsRNAs formed during nascent pre-mRNA processing could stabilize such transient RNA duplexes and promote back-splicing of a subset of circRNAs. In support of this view, we expressed the wild-type (WT) or a number of NF90 truncations lacking either one dsRNA-binding motif (dsRBM) or both dsRBM individually in scramble or NF90 stable KD cell lines, followed by the examination of nascent circRNA formation. We found that re-introduction of only WT Flag-NF90, but not these NF90 truncations, into NF90 KD cells could rescue the nascent circPOLR2A and circDHX34 expression (Figures 3F and 3G). In contrast, a circRNA (circRBM33), which does not contain A- or U-rich complementary motifs in its flanking introns, did not respond to NF90 KD or re-introduction of WT or NF90 truncations (Figure 3G, right panel).

Finally, in agreement with the view that NF90/NF110 have a similar role in regulating back-splicing for some circRNAs (Figures 2 and S3), re-introduction of WT Flag-NF110, but not its truncations, into NF90 KD cells rescued the expression of circPOLR2A and circDHX34, but not circRBM33 (Figures S5D and S5E).

CircRNA Expression Was Decreased upon Poly(I:C) Treatment, Corresponding to the Export of NF90/NF110 to the Cytoplasm

As a shuttling protein between the nucleus and the cytoplasm, NF90/NF110 are exported to the cytoplasm upon infection and become associated with viral transcripts to suppress viral replication (Harashima et al., 2010; Pfeifer et al., 2008). We observed that NF90/NF110 were rapidly exported to the cytoplasm upon 6 hr of poly(I:C) stimulation to mimic viral infection (Figures 4A and S6A). Nascent RNA RIP with anti-Flag antibodies performed in Flag-NF90 or Flag-NF110 stably expressing HeLa cells revealed a reduced association between the circRNA-forming pre-mRNAs and Flag-NF90/NF110 after the poly(I:C) treatment (Figure 4B). Correspondingly, the reduced production of nascent circRNAs was observed upon 6 hr of poly(I:C) treatment (Figure 4C). Vesicular stomatitis virus (VSV) infection of cells also led to a similar decrease of nascent circRNA expression (Figure 4D), while their cognate mRNAs were largely unaffected (data not shown).

Genome-wide analyses of nascent circRNA expression (Figure S6B) showed that circRNA expression was decreased upon 6 hr of poly(I:C) treatment (Figure 4E). For instance, among the top 300 high-confidence nascent circRNAs identified in both samples before and after poly(I:C) stimulation, the production of over 80% was reduced (Figures 4F and 4G; Table S5), while only about 20% circRNAs slightly increased in their expression (Figures 4F and 4G; Table S5). The reduced expression of randomly selected nascent circRNAs could be verified by RT-qPCR (Figure S6C).

Remarkably, the downregulated circRNAs upon poly(I:C) treatment largely overlapped with the decreased circRNAs in response to NF90 KD or NF110 KD at the nascent level (Figure 4H; Table S6). For instance, the production of 1,625 nascent circRNAs was reduced in NF90 KD cells (the pie in magenta in Figure 4H; Table S6), and the expression of 1,711 nascent circRNAs was downregulated in cells treated with poly(I:C) (the pie in gray in Figure 4H; Table S5). Approximately 90% of these downregulated circRNAs at the nascent level were overlapped in these conditions (Figure 4H, upper panel). Together, these results indicate that the export of NF90/NF110 to the cytoplasm upon viral infection might reduce their ability to bind pre-mRNA in the nucleus and subsequently suppress the generation of a subset of circRNAs.

To confirm that this observed circRNA reduction upon poly(I:C) treatment is dependent on the nucleocytoplasmic re-distribution of NF90/NF110 (Figures 4A and S6A), we over-expressed NF90 in cells followed by poly(I:C) stimulation. As expected, the poly(I:C)-stimulation-caused circRNA reduction could be noticeably rescued by overexpression of NF90 for examined circRNAs (Figure 4I). Furthermore, it has been shown that the NF90/NF110 export depends on PKR activation and phosphorylation upon infection (Harashima et al., 2010; Shina and Nakayama, 2014). Consistent with these studies, we found that NF90/NF110 were no longer exported to the cytoplasm upon poly(I:C) treatment (Figure S6A, middle and right panels) in PKR-depleted cells (Figure S6D). Although the PKR depletion led to circRNA downregulation (Figure S6E), importantly, upon poly(I:C) treatment, the level of the reduced circRNA expression was decreased.

(G) The average expression levels of two groups of high-confidence circRNAs in control and poly(I:C)-stimulated cells shown in (F). p value, Wilcoxon rank-sum test.

(H) Genome-wide analyses revealed a strong correlation between the reduced circRNA formation upon poly(I:C) treatment and the decreased circRNA production in NF90- or NF110-depleted cells at the nascent level. The downregulated nascent circRNAs upon poly(I:C) treatment or NF90 or NF110 depletion were compared with one another. The high-confidence circRNAs were selected by BSJ reads ≥ 5 in at least one sample. The expression of each circRNA was normalized to its linear RNA isoform.

(I) Overexpression of NF90 could largely rescue the circRNA reduction in response to poly(I:C) stimulation. Nascent RNAs labeled with 4sU (Zhang et al., 2016b) were collected in control or NF90 overexpressed HeLa cells 6h post poly(I:C) transfection. Each nascent circRNA abundance was normalized to each corresponding pre-mRNA by RT-qPCR.

In (B), (C), and (I), error bars represent SD in triplicate experiments. *p < 0.05, **p ≤ 0.01, ***p ≤ 0.001.

See also Figure S6; Tables S5 and S6.
NF90/NF110 Were Released from circRNP Complexes upon Viral Infection, Allowing Their Binding to Viral mRNAs

It has been shown that dsRNA-binding proteins, such as NF90/NF110 (Urcuqui-Inchima et al., 2006), could bind to structured RNAs in a sequence-independent manner (Larcher et al., 2004; Patiño et al., 2015; Ryter and Schultz, 1998). As circRNAs were hypothesized to be highly structured (Lasda and Parker, 2014), we speculated that in addition to facilitating circRNA formation in the nucleus (Figures 2, 3, and S2–S5), NF90/NF110 may also interact with mature circRNAs. RIP assays revealed that both NF90 and NF110 were associated with circRNAs, such as circPOLR2A and circDHX34 (Figures 5A–5D) in untreated cells, indicating that NF90/NF110 were components of some circRNP complexes. Intriguingly, the NF90/NF110-interacting circRNAs were noticeably reduced upon poly(I:C) treatment (Figures 5A and 5B) or VSV infection (Figures 5C and 5D). In the control, we found that the association of NF90/NF110 with linear mRNA isoforms was not altered before and after poly(I:C) treatment or VSV infection (Figures S7A and S7B).
to ssRNAs in vitro (Figure 2C). These observations thus indicated that NF90/NF110 both interacted with circular and structured RNAs, but NF110 appeared to bind RNAs more promiscuously than NF90, probably due to the GQSy motif in the C-terminal region of NF110.

To further examine whether the strong binding capability of circRNAs to NF90 could compete with its interaction with viral mRNAs, we performed a competition assay to examine the binding capability between the in-vitro-transcribed (IVT) linear mRNAs or circRNAs to the partially purified Flag-NF90 from cells infected with VSV (Figure 5F, left panel). In these cells, Flag-NF90 could efficiently precipitate vsvm mRNAs (Figure 5F, top right panel). Incubation of the in-vitro-circularized RNAs strongly competed with the binding of vsvm mRNAs with Flag-NF90, as revealed by the fact that more soluble vsvm mRNAs could be readily detected with increased amount of circRNAs as competitors (Figure 5F, bottom right panel). In the control, we could not detect the competitive effect of the IVT linear RNAs on the binding with Flag-NF90 (Figures S7A and S7B). In addition, we performed a reciprocal competition assay by incubating in-vitro-transcribed vsvm or egfp mRNAs with Flag-NF90-bound endogenous circRNAs (Figure S7C, left panel). Consistently, we found that vsvm mRNAs, but not egfp mRNAs, competed with Flag-NF90-bound circDHX34, as revealed by the fact that more soluble circDHX34 could be readily detected with increased amount of vsvm mRNAs as competitors (Figure S7C, top right). Also, we could not detect the competitive effect of vsvm mRNAs on the binding of linear dhn34 mRNAs with Flag-NF90 (Figure S7C, bottom right).

Overexpression of circRNA Competes for NF90/NF110 Binding with Viral mRNAs

Results shown in Figure 5 suggest that competition of circRNAs with viral mRNAs to NF90 binding was sequence independent. We reasoned that overexpression of any circRNAs would be able to interact with NF90/NF110, sequestering them from binding to viral mRNAs. To test this possibility, we transfected individual vectors into HeLa cells for either non-circPOLR2A or circPOLR2A overexpression (Figure 6A, #1 or #2, respectively) (Zhang et al., 2014). Of note, both vectors could produce high levels of egfp mRNAs (Figures 6A and 6B). Meanwhile, a reduced binding of NF90/NF110 to vsvm mRNA was only detected in circPOLR2A, but not non-circPOLR2A, overexpressed cells (Figure 6B, right panel).

Similar observations were found by taking advantage of the Dox-inducible circmCherry stable expression HeLa reporter cells (Figure 1A). Such cells were first treated with Dox to induce circmCherry expression followed by VSV infection (Figure 6C). Compared to cells that did not express circmCherry, Dox-treated cells exhibited high levels of circmCherry expression (Figure 6C). Meanwhile, vsvm mRNAs associated with NF90/ NF110 were reduced (Figure 6C). Correspondingly, overexpression of different circRNAs could facilitate viral replication (Figure 6D). These results together support a model that the down-regulation of circRNAs upon viral infection and the reduced association of NF90/NF110 with circRNP complexes subsequently allow these proteins’ binding to viral mRNAs for efficient host defense (Figure 6E).

DISCUSSION

Back-splicing is facilitated by the orientation-opposite complementary sequences residing in the flanking introns of the circularized exon(s) (Chen, 2016). Although having the same cis-elements, circRNA expression is in a cell-type-specific or tissue-specific manner (Dong et al., 2016; Salzman et al., 2013; Zhang et al., 2016a). In endogenous conditions, the number of potential RNA pairs formed across or within flanking introns, the distance between each potential pair of complementary sequences, and additional trans-factors associated with these cis-elements that stabilize or melt RNA pairs can affect circRNA generation.

Here, we applied a genome-wide siRNA library that targets all human genes to screen the potential trans-factors that affect back-splicing with an efficient circRNA expression reporter (Figure 1). As expected, we found that many splicing factors were involved in back-splicing regulation (Figures 1E and S1H). Conspicuously, factors related with host immunity were identified to affect circRNA production (Figures 1E–1K and S1J). These factors include RIG-I (Figure 1I) that detects dsRNAs to trigger antiviral cytokine production (Yoneyama and Fujita, 2008), TLR3 (Figure 1J) that recognizes negatively charged dsRNAs to activate immune responses during infection (Choe et al., 2005), multifunctional proteins ILF2 (Figure S1J) and ILF3 (Figure 1K) that are known to play important roles in antiviral immune responses (Harashima et al., 2010; Patiño et al., 2015; Pfeifer et al., 2008; Shi et al., 2007; Wen et al., 2014). Although how exactly these identified proteins could affect circRNA biogenesis remains largely unknown at the moment, they might directly or indirectly affect circRNA processing and even function. In the current study, we uncovered that NF90/NF110 produced from the ILF3 gene directly modulated back-splicing (Figures 2, 3, and S2–S5) and also coordinated with circRNA production in response to viral infection (Figures 4, 5, 6, and S6). Our data suggest that dsRNA-binding proteins NF90/NF110 (Figures 2A and 2B) strongly bind to and stabilize transient RNA pairs (Figure 3) formed between intronic complementary sequences, leading to the enhanced circRNA biogenesis in the nucleus (Figures 2F–2J and S3–S5). Such a stabilization of intronic RNA pairs by NF90/NF110 could be post-transcriptional, as most circRNA processing occurred post-transcriptionally (Zhang et al., 2016b).

Over ten thousand different circRNAs were reported in various organisms. Except for a few circRNAs, by far the function of the majority of circRNAs still remained to be explored (Chen, 2016). Here, we found that generation of many nascent circRNAs was rapidly downregulated upon poly(I:C) treatment or VSV infection (Figures 4C–4H). Such a reduction of newly synthesized circRNAs was correlated with the disrupted formation of nascent circRNAs in response to NF90/NF110 depletion (Figures 4H and 4I), suggesting that the nuclear export of NF90/NF110 upon infection (Figures 4A and S6A) (Larcher et al., 2004) contributed in part to the decreased circRNA production. Of note, the subcellular redistribution upon poly(I:C) treatment appeared to be different between NF90 and NF110 (Figure 4A). This raises a possibility that their different export may have variable effects on circRNA biogenesis during infection, which requires further investigation.

In addition to the involvement of NF90/NF110 in circRNA biogenesis, some circRNAs were found to be associated with...
NF90/NF110 (Figure 5). This observation indicates that the formation of NF90/NF110-circRNP accumulations in the cytoplasm may influence the host immune response. We found that circRNAs, but not their linear RNA isoforms, competed with viral mRNAs for binding to NF90/NF110 and that binding circRNAs to NF90/NF110 appeared to be in a sequence-independent manner (Chen et al., 2015; Larcher et al., 2004; Patin˜o et al., 2015; Ryter and Schultz, 1998). Hence, it is possible that circRNAs may also associate with other such proteins for functions. The topological structure of circRNAs is a mystery, and future studies are warranted to address how the unusually structured RNA circles may confer their strong binding to NF90/NF110 and other dsRNA-binding proteins.

Finally, as it is well known that circRNA expression is generally low (Chen, 2016), we speculate that many circRNAs, but not one specific circRNA, may act as a group in response to immune response. In this scenario, circRNAs together can be used as a molecular reservoir of NF90/NF110 for prompt immune response upon viral infection; in the non-infected condition, the association of NF90/NF110 with circRNAs may keep them from nonspecific immune responses in cells. Future work that aims to address additional immune-response-related factors (Figures 1 and S1) in circRNA biogenesis and ultimately function has a potential to uncover new roles of circRNA in immunity.

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **CONTACT FOR REAGENT AND RESOURCE SHARING**
- **EXPERIMENTAL MODEL AND SUBJECT DETAILS**
 - Human Cell Lines
ACKNOWLEDGMENTS

We are grateful to B. Tian for reading the manuscript, F. Hou for preparing VSV viral particles, Z. Bai for initiating RNA circularization assay, and all lab members for discussion. This work was supported by CAS (XDB19020104), MOST (2016YFA0100701 and 2014CB964802), and NSFC (91440202 and 91540115).

Received: December 13, 2016
Revised: March 31, 2017
Accepted: May 19, 2017
Published: June 15, 2017

AUTHOR CONTRIBUTIONS

REFERENCES

STAR★METHODS

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabbit monoclonal anti-ILF3</td>
<td>Abcam</td>
<td>Cat#Ab92355; RRID: AB_2049804</td>
</tr>
<tr>
<td>β-Actin</td>
<td>Sigma</td>
<td>Cat#A3854; RRID: AB_262011</td>
</tr>
<tr>
<td>FLAG</td>
<td>Sigma</td>
<td>Cat#F1804; RRID: AB_262044</td>
</tr>
<tr>
<td>FLAG</td>
<td>Shanghai Genomics</td>
<td>Cat#SG4110-16</td>
</tr>
<tr>
<td>Cy3-AffiniPure Goat anti-Rabbit IgG(H+L)</td>
<td>Jackson</td>
<td>Cat#111-165-045; RRID: AB_2338003</td>
</tr>
<tr>
<td>Anti-ADAR1</td>
<td>Santa Cruz</td>
<td>Cat#sc-19077; RRID: AB_2257912</td>
</tr>
<tr>
<td>Anti-Histone H3</td>
<td>Abcam</td>
<td>Cat#Ab1791; RRID: AB_302613</td>
</tr>
<tr>
<td>Anti-Tubulin</td>
<td>Santa Cruz</td>
<td>Cat#sc-23948; RRID: AB_628410</td>
</tr>
<tr>
<td>Bacterial and Virus Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSV-GFP</td>
<td>(Shi et al., 2015)</td>
<td>N/A</td>
</tr>
<tr>
<td>Chemicals, Peptides, and Recombinant Proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poly(I:C)</td>
<td>Sigma</td>
<td>Cat#P9582</td>
</tr>
<tr>
<td>4-thiouridine (4sU)</td>
<td>Sigma</td>
<td>Cat# T4509</td>
</tr>
<tr>
<td>DRB</td>
<td>Sigma</td>
<td>Cat# D1916</td>
</tr>
<tr>
<td>doxycycline (Dox)</td>
<td>Clontech</td>
<td>Cat#631311</td>
</tr>
<tr>
<td>T4 Polynucleotide Kinase</td>
<td>NEB</td>
<td>Cat#M0201</td>
</tr>
<tr>
<td>CircLigase II</td>
<td>Epicenter</td>
<td>Cat#CL9021K</td>
</tr>
<tr>
<td>RNase R</td>
<td>Epicenter</td>
<td>Cat# MRNA092</td>
</tr>
<tr>
<td>T4 RNA Ligase I</td>
<td>NEB</td>
<td>Cat#M0204L</td>
</tr>
<tr>
<td>EZ-link biotin-HPDP</td>
<td>Pierce</td>
<td>Cat#21341</td>
</tr>
<tr>
<td>cOmplete ULTRA Tablets, Mini, EASYpack Protase Inhibitor Cocktail</td>
<td>Roche</td>
<td>Cat#000000005892970001</td>
</tr>
<tr>
<td>Ribonucleoside Vanadyl Complex</td>
<td>NEB</td>
<td>Cat#S1402S</td>
</tr>
<tr>
<td>Dynabeads Protein G</td>
<td>Invitrogen</td>
<td>Cat#1003D</td>
</tr>
<tr>
<td>Dynabeads MyOne Streapavidin C1</td>
<td>Invitrogen</td>
<td>Cat#65001</td>
</tr>
<tr>
<td>X-tremeGENE 9</td>
<td>Roche</td>
<td>Cat#6366236001</td>
</tr>
<tr>
<td>Lipofectamine 2000 Reagent</td>
<td>Thermo</td>
<td>Cat#11668019</td>
</tr>
<tr>
<td>Hoechst 33342</td>
<td>Sigma</td>
<td>Cat#B2261-25MG</td>
</tr>
<tr>
<td>Glutathione Sepharose 4B</td>
<td>GE healthcare</td>
<td>Cat#17-0756-01</td>
</tr>
<tr>
<td>VECTASHIELD Antifade Mounting Medium</td>
<td>Vector Lab</td>
<td>Cat#H-1000</td>
</tr>
<tr>
<td>ProLong Gold Antifade Mountant</td>
<td>ThermoFisher</td>
<td>Cat#P36930</td>
</tr>
<tr>
<td>MNase</td>
<td>NEB</td>
<td>Cat#M0247S</td>
</tr>
<tr>
<td>Glycerol</td>
<td>ABCONE</td>
<td>Cat#G46055</td>
</tr>
<tr>
<td>HEPES</td>
<td>ABCONE</td>
<td>Cat#I33755</td>
</tr>
<tr>
<td>TWEEN 20</td>
<td>ABCONE</td>
<td>Cat#P87875</td>
</tr>
<tr>
<td>Triton X-100</td>
<td>ABCONE</td>
<td>Cat#X10010</td>
</tr>
<tr>
<td>Agarose</td>
<td>ABCONE</td>
<td>Cat#A47902</td>
</tr>
<tr>
<td>Bovine Serum Albumin</td>
<td>ABCONE</td>
<td>Cat#A23088</td>
</tr>
<tr>
<td>Critical Commercial Assays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA-free kit</td>
<td>Ambion</td>
<td>Cat#AM1907</td>
</tr>
<tr>
<td>DIG Northern Starter Kit</td>
<td>Roche</td>
<td>Cat#12039672910</td>
</tr>
<tr>
<td>Mut Express MultiS Fast Mutagenesis Kit</td>
<td>Vazyme</td>
<td>Cat#C213-01</td>
</tr>
<tr>
<td>Hieff Clone One Step Cloning Kit</td>
<td>Yeasen</td>
<td>Cat#10905ES25</td>
</tr>
<tr>
<td>2 X T5 Super PCR Mix</td>
<td>TSINGKE</td>
<td>Cat#TSE005</td>
</tr>
</tbody>
</table>

(Continued on next page)
Continued

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>SuperScript III Reverse Transcriptase</td>
<td>Invitrogen</td>
<td>Cat#18080044</td>
</tr>
<tr>
<td>RiboMAX Large Scale RNA Production System</td>
<td>Promega</td>
<td>Cat# P1300</td>
</tr>
<tr>
<td>Dual-Glo Luciferase Assay System</td>
<td>Promega</td>
<td>Cat#E2980</td>
</tr>
<tr>
<td>Pierce Silver Stain for Mass Spectrometry kit</td>
<td>Thermo</td>
<td>Cat#24600</td>
</tr>
<tr>
<td>NuPAGE Novex 4-12% Bis-Tris Gel</td>
<td>Invitrogen</td>
<td>Cat#NP0321BOX</td>
</tr>
<tr>
<td>Human ON-TARGETplus (OTP) siRNA libraries</td>
<td>Dharmacon</td>
<td>Cat#G-105005-05</td>
</tr>
<tr>
<td>StarPrep Gel Extraction Kit</td>
<td>StarPrep GenStar Co.LTD</td>
<td>Cat#D205-04</td>
</tr>
</tbody>
</table>

Deposited Data

- Raw and analyzed data: This paper GEO:GSE90874
- Mendeley data: This paper http://dx.doi.org/10.17632/gkn6f863t9.1

Experimental Models: Cell Lines

- PA1: ATCC Cat#CRL-1572
- HeLa: ATCC Cat#CCL-2
- HEK293: ATCC Cat#CRL-1573

Oligonucleotides

- siRNA target sequences: circmCherry
 - This paper
 - N/A
- siRNA target sequences: circmCherry
 - This paper
 - N/A
- siRNA target sequences: circmCherry
 - This paper
 - N/A
- siRNA target sequences: circmCherry
 - This paper
 - N/A
- Other primers and shRNA target sequences, see Table S7
 - This paper
 - N/A

Recombinant DNA

- P23-tight TRE promoter-1/2egfp-circmCherry-1/2 egfp
 - This paper
 - N/A
- P23-Flag-NF90
 - This paper
 - N/A
- P23-Flag-NF110
 - This paper
 - N/A
- P23-Flag-NF90-dsRBM1-mut
 - This paper
 - N/A
- P23-Flag-NF90-dsRBM2-mut
 - This paper
 - N/A
- P23-Flag-NF90-dsRBM1+2-mut
 - This paper
 - N/A
- P23-Flag-NF110-dsRBM1-mut
 - This paper
 - N/A
- P23-Flag-NF110-dsRBM2-mut
 - This paper
 - N/A
- P23-Flag-NF110-dsRBM1+2-mut
 - This paper
 - N/A
- pZW1-circPOLR2A (Zhang et al., 2014) Addgene Plasmid # 73449
- pZW1-circPOLR2A-mut (Zhang et al., 2014) N/A

Software and Algorithms

- GraphPad Prism
 - GraphPad Software
- TopHat v2.0.9 (Kim et al., 2013) http://ccb.jhu.edu/software/tophat/index.shtml
- TopHat-Fusion v2.0.9 (Kim and Salzberg, 2011) http://ccb.jhu.edu/software/tophat/fusion_index.shtml
- CIRCexplorer 1.1.10 (Zhang et al., 2014) https://github.com/YangLab/CIRCexplorer
- DAVID Bioinformatics Resources (v6.7) (Huang da et al., 2009) https://david-d.ncifcrf.gov/

(Continued on next page)
Further information and requests for reagents may be directed to, and will be fulfilled by, the corresponding author, Ling-Ling Chen (linglingchen@sibcb.ac.cn).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Cell Lines
Human cell lines including HeLa, HEK293 and PA1 cells were purchased from the American Type Culture Collection (ATCC; https://www.atcc.org/).

METHOD DETAILS

Cell culture and cell transfection
HEK293FT, HeLa and PA1 cells were cultured using standard protocols from ATCC. Plasmid or poly(I:C) transfection was carried out using X-treme GENE 9 (Roche) or Lipofectamine 2000 Reagent (Thermo) for HeLa and HEK293FT cells according to the manufacturer’s protocols, with 70%–80% transfection efficiency in general.

Plasmid constructions and generation of stable cell lines
A tet-on circRNA vector that expresses the back-spliced circmCherry RNA (Zhang et al., 2016b) was modified by placing a stop codon in front of IRES sequence, followed by a start codon (see Figure 1 for details). Thus, the mCherry protein could be only transcribed from the back-spliced circmCherry. The construct was then stably transfected into HeLa rtTA cells.

To knock down NF90 or NF110, target sequences for NF90, NF110 and a scramble sequence were individually cloned into pLKO.1-TRC vector between the Age I and EcoR I sites. HeLa cells were infected by lentiviral shRNAs to generate stable cell lines with NF90 or NF110 knockdown, respectively. The specificity of NF90 or NF110 knockdown was obtained by the specific shRNAs that target the unique 3′-UTR region of NF90 or NF110. NF90 and NF110 transient double knockdown was obtained by the shRNA that target the common CDS region of NF90 or NF110.

To overexpress NF90 or NF110, the N-terminal FLAG-fused NF90 or NF110 sequences were amplified with Phanta Super-Fidelity DNA Polymerase (Vazyme Biotech) from HeLa cells and cloned into the p23-phage vector between the NheI and XhoI sites. The plasmids were stably transfected into HeLa cells, respectively. HeLa cells stably transfected with the empty FLAG vector were used as controls. Primers for plasmid constructions were listed in Table S7. All constructs were confirmed by Sanger sequencing.

Lentivirus production and cell infection
To produce lentiviral particles, 1.25 × 10^7 HEK293FT cells in a 15-cm dish were co-transfected with 20 µg pLKO.1 shRNA construct, 15 µg of psPAX2 and 10 µg pMD2.G. The supernatant containing viral particles was harvested twice at 48 and 72 hr after transfection, and filtered through Millex-GP Filter Unit (0.22 µm pore size, Millipore). Viral particles were then concentrated about 100-fold by sucrose gradient ultracentrifugation, resuspended in PBS containing 0.1% BSA, and stored at –80°C until use. To infect HeLa cells with lentivirus, cells were incubated with culture medium containing 10 µL concentrated lentivirus and 5 µg/ml polybrene (Sigma) at 37°C for 1 hr. To increase the knockdown efficiency, infected cells were under several days of puromycin selection. Knockdown efficiency of proteins was evaluated by western blotting (WB).

RNA isolation, RT-PCR and RT-qPCR
Total RNAs from cultured cells were extracted with Trizol Reagent (Life technologies) according to the manufacturer’s protocol. RNAs were further treated with DNase I (Ambion, DNA-free kit) and cDNAs were reverse transcribed with SuperScript III (Invitrogen) and
applied for PCR and/or qPCR analysis. Actin mRNA was examined as an internal control for normalization. The relative expression of each examined gene was determined with triplicate experiments. Primers for PCRs and qPCRs were listed in Table S7.

Genome-wide siRNA screening of human genes associated with circRNA biogenesis

Human ON-TARGETplus (OPT) siRNA library (GE Dharmacon) targeting 18,104 genes was used to screen potential genes associated with circRNA expression according to the manufacturer’s protocol. All steps involved in multiple dispersing of samples were performed by Multidrop Combi Reagent Disperser (Thermo scientific). Briefly, prior to cell transfection, RNAiMAX transfection reagent with circRNA expression according to the manufacturer’s protocol. All steps involved in multiple dispersing of samples were performed by Multidrop Combi Reagent Disperser (Thermo scientific). Briefly, prior to cell transfection, RNAiMAX transfection reagent (0.1 μL IMAX in each well) was added to the 384-well siRNA screening plates in which each well contains four siRNAs targeting one single gene. After 20 min, HeLa reporter cells were seeded at a density of 500 cells/well. Cells were cultured for 48 hr to knock down gene expression and then treated with 1 μg/ml Dox for 24 hr to induce expression of mCherry and EGFP. After washed with PBS using LS405 microplate (BioTek), the fluorescence of mCherry and EGFP were measured, recorded and analyzed using Operetta (PerkinElmer). For accurate and unbiased screening, two independent experiments were performed and assessed. Analyses of two screening are listed in Table S1.

Functional annotation of RBPs

Potential RNA binding proteins (RBPs) from high throughput screening of HeLa reporter cells were identified by criteria listed in Figure 1E and DAVID Bioinformatics Resources (v6.7) (Huang da et al., 2009). Further classification of 103 RBPs was manually clustered with UniProt Knowledgebase (UniProt, 2017) (http://www.uniprot.org/).

Polyadenylated/Non-polyadenylated RNA separation, Ribosomal RNA depletion and RNA-seq

Polyadenylated and non-polyadenylated RNA separation was carried out as described (Yang et al., 2011; Yin et al., 2015). Nascent RNA purification was carried out as described (Zhang et al., 2016b). Briefly, prior to construct non-polyadenylated or nascent RNA-seq library, rRNA was depleted as described (Yang et al., 2011). Ribosomal RNA removal was carried out using RiboMinus Human/ Mouse Transcriptome Isolation Kit (Invitrogen) according to the manufacturer’s protocol. RNA-seq libraries were prepared using Illumina TruSeq RNA Sample Prep Kit V2 and subjected to deep sequencing with Illumina HiSeq 2500 at CAS-MPG Partner Institute for Computational Biology Omics Core, Shanghai, China.

Northern blotting

Northern blotting (NB) was performed according to the manufacturer’s protocol (DIG Northern Starter Kit, Roche). Digoxigenin (Dig)-labeled antisense and sense riboprobes were made using RiboMAX Large Scale RNA Production Systems (Promega). In brief, 5 μg total RNAs or 0.5 μg in vitro synthesized linear or circular RNAs were resolved on denaturing urea polyacrylamide gel, transferred to nylon membrane (Roche) and UV-crosslinked using standard manufacturer’s protocol. Membrane was then hybridized with specific Dig-labeled rRNA probes. NB probes are listed in Table S7.

Subcellular fractionation

Nuclear and cytoplasmic fractionation was carried out as described (Yin et al., 2012) with slight modifications. Briefly, 3 × 10⁶ HeLa cells with or without Poly(I:C) treatment were washed with PBS, scraped into 15 ml-conical tubes and collected by centrifugation at 1,000 rpm for 2 min at room temperature. Cells were resuspended in 300 μL lysis buffer (DPBS containing 1% NP-40, 0.5% sodium deoxycholate, 5 mM EDTA, 1 mM DTT, 1 mM PMSF, 2 mM VRC, 15% glycerol, 1X proteasine inhibitor cocktail), incubated on ice for 5 min and then examined under an optical microscope to ensure that membranes of most of cells were disrupted. Cells were centrifuged at 4,000 X g for 1 min at 4°C and the supernatant was saved as cytoplasmic fractionations. The precipitated nuclei were further washed once with lysis buffer, resuspended in 300 μL lysis buffer, sonicated and centrifuged at 13,000 rpm for 10 min at 4°C. The supernatant was saved as nuclear extracts.

Immunofluorescence (IF)

For all experiments, HeLa cells or HEK293 cells seeded on 18 × 18 mm glass coverslips were fixed with 0.5% paraformaldehyde, permeabilized with 0.5% Triton X-100. For Immunofluorescence, anti-IIF3 (1:200) and anti-Flag (1:200) antibodies were used, and DAPI was used as a nuclear marker. Slides were mounted with VECTASIELD Antifade Mounting Medium (Vector Lab) and imaged on a DeltaVision Elite imaging system (Applied Precision Imaging/GE Healthcare). Raw images were processed with softWoRx 6.0 and ImageJ/Fiji (Schindelin et al., 2012). Deconvolution images were generated by softWoRx 6.0 using the enhanced ratio method. Volume and distance measurements were performed using the “3D Object Counter” plugin for ImageJ/Fiji (Bolte and Cordelières, 2006).

Metabolic labeling of nascent RNA with 4sU and nascent RNA purification

Metabolic labeling of newly synthesized RNAs was performed as described (Zhang et al., 2016b) with slight modifications. Cells with different treatments were incubated with 100 μM DRB (Sigma, D1916) in the medium for 3 hr to block Pol II transcription. Transcription was reinitiated after removal of DRB and newly transcribed RNA was labeled with 200 μM 4sU (Sigma, T4509). TRIzol was added to cells to stop transcription and to purify total RNAs. 100-140 μg 4sU-labeled RNAs were incubated with 0.2 mg/ml EZ-link biotin-HPDP (Pierce, 21341, dissolved in dimethylformamide (DMF, Sigma, D4551) at a concentration of 1 mg/ml) in biotinylation buffer.
Native and nascent RNA Immunoprecipitation (RIP) Cells growing in 10 cm dishes were rinsed twice with ice-cold PBS, harvested in 10 mL ice-cold PBS and then centrifuged at 1,000 rpm for 5 min at 4°C. Cell were resuspended in 1 mL RIP buffer (50 mM Tris, pH 7.4, 150 mM NaCl, 0.5% Igepal, 1 mM PMSF, 1X protease inhibitor cocktail (Roche) and 2 mM VRC) and subjected to three rounds of gentle sonication. Cell lysates were centrifuged at 12,000 rpm for 15 min at 4°C and the supernatants were precleared with 15 µL Dynabeads Protein G (Invitrogen) to get rid of non-specific binding. Then, the precleared lysates were used for IP with anti-Flag antibodies (Sigma). IP was carried out for 2 hr at 4°C. The beads were washed three times with high salt buffer and two times with the same RIP buffer, followed by extraction with elution buffer (100 mM Tris, pH 6.8, 4% SDS, and 10 mM EDTA) at room temperature for 10 min. One-third of the eluted sample was used for WB and the remaining was used for RNA extraction. The RNA enrichment was assessed by RT-qPCR. Primers are listed in Table S7.

For Nascent RIP, cells were incubated with 100 µM DRB (Sigma, D1916) for 3 hr to block Pol II transcription. Transcription was reinitiated after removal of DRB and newly transcribed RNAs were labeled with 200 µM 4sU for 30 min (Sigma, T4509), as described above. The native RIP was performed with anti-Flag antibodies (Sigma), followed by the purification of 4sU-labeled RNAs from RIP products and RT-qPCR analyses with primers listed in Table S7.

Individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP)-seq ICLIP-seq and data analyses were performed as described (Chen et al., 2015; Wu et al., 2016) with slight modifications. HeLa cells expressing Flag-tagged NF90 were UV-crosslinkend, resuspended in lysis buffer and sonicated for 20 s x 6 times on 25% duty. Supernatants were incubated with anti-Flag antibodies (Shanghai Genomics) or control IgG-conjugated beads for 2 hr at 4°C. Beads with protein-RNA complexes were treated with 5 Kunz U/ml of micrococcal nuclease in the presence of 5 µg yeast tRNAs for 5 min at 37°C, followed by dephosphorylation of RNA 3’ ends with PK. Then pre-adenylated linker L3 (3’ modification with biotin) was linked to 3’ end of RNA using T4 RNA ligase 1 at 16°C overnight. 5’ end of RNA was labeled with [γ-32P] ATP using PK. Protein-RNA complexes were eluted with 1x Nupage loading buffer (Invitrogen) at 70°C for 10 min, resolved on 4%–12% Bis-Tris gel (Invitrogen), transferred to a nitrocellulose membrane and exposed to a Fuji film at ~80°C. Bands corresponding to specific protein-RNA complexes were excised and then digested with proteinase K. RNAs were purified and cDNAs were made using SuperScript III (Invitrogen) with Rclip primers. cDNAs were separated on 6% denaturing urea polyacrylamide gel, then three bands at 120-200 nt (high), 85-120 nt (medium) and 70-85 nt (low) (Figure S3) were excised, purified and circularized by Circligase II (Epigenic). Single-stranded cDNAs were hybridized with Cut-Oligo and then digested by BamHI. Linearized cDNAs were PCR amplified and purified. The obtained iCLIP libraries were subjected to high throughput deep sequencing.

In vitro RNA transcription, circularization and purification Biotinylated RNAs were produced using Ribozyme large RNA production system (Promega) according to the manufacturer’s protocol with slight modifications. Briefly, 1 µg PCR-amplified T7- DNA fragments were incubated with 1 µL T7 RNA polymerase enzyme mix, 0.5 mM biotin-14-CTP, 1 mM GTP and 5 mM each of other NTPs. 5 mM GMP was supplemented in the reaction to produce 5'-monophosphate RNA that is required for subsequent RNA circularization. The reaction was carried out for 2 hr at 37°C, followed by DNase I treatment for 30 min at 37°C to remove DNA templates. Transcribed RNAs were precipitated with ethanol, washed with 70% ethanol and resuspended in RNAase-free water. 50 µg linear RNAs were incubated with T4 RNA ligase 1 (NEB) in 500 µL reaction for overnight at 16°C according to the manufacturer’s protocol. Circularized RNA products were treated with RNase R as described (Zhang et al., 2014), concentrated by ethanol precipitation, resolved on denaturing urea polyacrylamide gel and then visualized by Ethidium bromide staining. The corresponding to circular RNA band was excised and circular RNAs were purified.

Cell lysate preparation and ds- or ss-RNA pull-down assay Biotinylated RNA pull-down was performed as described (Wu et al., 2016) with slight modifications. In brief, 4 µg biotinylated RNAs were heated for 5 min at 65°C in PA buffer (10 mM Tris HCl pH 7.5, 10 mM MgCl2, 100 mM NH4Cl) and slowly cooled down to room temperature. To prepare cell lysate for pull-down with single-stranded (ss) RNA (efxp or Alu) or double-stranded (ds) inverted repeated RNAs (IRegops or IRLAlus), 1 x 107 PA1 cells were resuspended in 2 mL PBS, 2 mL nuclear isolation buffer (1.28 M sucrose, 40 mM Tris-HCl pH 7.5, 20 mM MgCl2, 4% Triton X-100) and 6 mL DEPC-water, followed by incubation on ice for 15 min. Nuclei were pelleted by centrifugation at 1,000 rpm for 5 min at 4°C, and resuspended in 1 mL binding buffer (100 mM HEPES pH 7.0, 50 mM KCl, 10% glycerol, 1 mM EDTA, 1 mM DTT, 0.5% Triton X-100) supplemented with tRNA (0.1 mg/ml), heparin (0.5 mg/ml) and RNasin.

Molecular Cell 67, 1–14.e1–e7, July 20, 2017 e5
Molecular Cell

(1 unit/μl). The nuclei were sonicated and centrifuged at 13,000 rpm for 10 min at 4°C. The supernatant was pre-cleared with Streptavidin Dynabeads (Invitrogen) for 30 min at 4°C, followed by incubation with folded RNAs for 2 hr and with beads for 1 hr at 4°C. Beads were washed five times with the binding buffer, and boiled in 1 x sample buffer for 10 min. The retrieved proteins were subjected to NuPAGE 4–12% Bis-Tris Gel (Invitrogen). Then the gel was stained using Pierce Silver Stain for Mass Spectrometry kit (Thermo Fisher Scientific) according to the manufacturer’s instructions. After silver staining, specific bands were cut and sent to Core Facility of Molecular Biology (Institute of Biochemistry and Cell Biology, Shanghai, CAS) for mass spectrometry (MS) analysis. Identified proteins by MS are listed in Table S2.

Cell lysate preparation and circular/linear RNA pull-down assay
Biotinylated RNA pull-down was performed as described (Wu et al., 2016). Briefly, 1 μg biotinylated RNAs (purified by PAGE) were heated for 5 min at 65°C in PA buffer (10 mM Tris HCl pH 7.5, 10 mM MgCl2, 100 mM NH4Cl) and slowly cooled down to room temperature. To prepare cell lysate for pull-down with linear or circular RNAs, 5 × 10⁶ HeLa cells were resuspended with 1 mL binding buffer (10mM HEPES pH7.0, 50Mm KCl, 10% glycerol, 1Mm EDTA, 1Mm DTT, 0.5% Triton X-100, heparin 0.3 mg/ml), sonicated and centrifuged at 13,000 rpm for 10 min at 4°C. The supernatant was pre-cleared with Streptavidin Dynabeads (Invitrogen) for 30 min at room temperature, followed by incubation with folded RNAs for 30 min and with beads for 15 min at room temperature. Beads were washed five times with the binding buffer, and boiled in 1 x sample buffer for 10 min. The retrieved proteins were subjected to WB.

Circular/linear RNAs binding competition assay
HeLa cells with Flag-NF90 stable expression were infected by VSV for 16 hr. NF90 bound VSVM mRNAs were precipitated by native RIP with anti-Flag antibodies (Sigma). The in vitro synthesized linear or circular RNAs were heated for 5 min at 65°C in PA buffer and slowly cooled down to room temperature. Then, different amounts of folded circular or linear RNAs were added to incubate with Flag-NF90-VSVM mRNAs complexes for 2 hr at 4°C in 0.2 mL RIP buffer. The supernatant was collected and used for RNA extraction with Trizol. The relative abundance of VSVM mRNA in the supernatant competed from the incubation with different amounts of circular or linear RNAs was assayed by RT-qPCRs.

vsvm mRNA and circRNA binding competition assay
HeLa cells with Flag-NF90 stable expression were used for RIP assay. NF90 bound RNAs (circRNAs or mRNAs) were precipitated by native RIP with anti-Flag antibodies (Sigma). The in vitro synthesized vsvm or egfp were heated for 5 min at 65°C in PA buffer and slowly cooled down to room temperature. Then different amounts of folded vsvm or egfp were incubated with Flag-NF90-RNA complexes for 2 hr at 4°C in 0.2 mL RIP buffer. The supernatant was collected and used for RNA extraction with Trizol. The relative abundance of circRNAs or mRNAs in the supernatant competed from the incubation with vsvm or egfp was assayed by RT-qPCRs.

Virus infection and viral titer determination
HeLa cells with overexpressed circPOLR2A (Figure 6B) or induced circmCherry (Figure 6C) were infected with VSV-GFP (m.o.i.: 0.01) for 12 hr. Then supernatant (with released virus) was collected for plaque assay in HEK293FT cells as described (Pfeifer et al., 2008) with slight modification. Briefly, 293FT cells were cultured in 6-well plates till spreading to nearly 100%, and replaced by FBS-free culture medium. Then different amounts of folded vsvm or egfp were heated for 5 min at 65°C in PA buffer and slowly cooled down to room temperature. After 3 hr incubation, culture medium was replaced with soft-agar mixture (1% agar), which is solidified at room temperature. After solidified, 293FT cells were cultured for 24 hr and colonies with GFP fluorescence were counted with fluorescent microscope. Virus yields were quantitated as PFU of released virus per ml of culture medium.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-seq analyses
For prediction of steady-state and nascent circRNAs: each steady-state and nascent RNA-seq dataset was first mapped using TopHat (Kim et al., 2013) (TopHat v2.0.9, parameters:--microexon-search -g 1 -a 6 -m 2) and aligned to GRCh37/hg19 human reference genome with the UCSC Genes annotation (Human: hg19 knownGene.txt updated at 2013/6/30). The unmapped reads were then realigned to hg19 human genome using TopHat-Fusion (Kim and Salzberg, 2011) (TopHat v2.0.9, parameters:--fusion-search--keep-fasta-order--bowtie1--no-coverage-search). The steady-state and nascent circRNAs were predicted using CIRCexplorer with existing gene annotations (Human hg19 knownGene.txt updated at 2013/6/30 and refFlat.txt updated at 2013/10/13) as described (Zhang et al., 2014).

For gene expression analysis: gene expression of mRNAs was determined by RPKM (Mortazavi et al., 2008) from poly(A)+ RNA-seq. Refseq genes with RPKM ≥ 1 were selected for comparison (Human hg19 refFlat.txt updated at 2013/10/13). Fold change (FC) between NF90 (or NF110) KD and scramble control was used to determine upregulated (FC ≥ 2), unchanged (0.5 < FC < 2) and downregulated (FC ≤ 0.5) genes. Expression of Refseq genes in HeLa cells is listed in Table S3.

For circRNA expression analysis: the expression of each circRNA was evaluated by RPM (mapped back-splicing Reads Per Million mapped reads) of reads that span circRNA back-splicing junction (BSJ) site (Zhang et al., 2014). Highly expressed (high-confidence) circRNAs were determined with reads spanning BJS ≥ 5. FC between NF90 KD (or NF110 KD) and scramble was used to determine...
upregulated (FC ≥ 1.5), unchanged (0.667 < FC < 1.5) and downregulated (FC ≤ 0.667) genes at steady-state poly(A)--/Ribo--/RNA-seq or nascent Ribo--/4sU-seq, respectively. The distribution of RPMs of circRNAs between NF90 KD (or NF110 KD) and scramble was plotted. Note that RPMs for NF90 KD (or NF110 KD) circRNAs were lower than those of scramble circRNAs. The high-confidence circRNAs at the steady-state and nascent levels in HeLa cells are listed in Tables S5 and S6, respectively.

iCLIP-seq analyses

We applied iCLIP-seq analysis pipeline according to previous publications with some modification (Chen et al., 2015; König et al., 2010; Wu et al., 2016; Yeo et al., 2009). In brief, iCLIP-seq reads were separated according to 4-nt experimental barcodes, followed by trimming relevant sequencing adapters. The 5-nt random barcodes were registered and removed before mapping to the human reference genome (GRCh37/hg19) by allowing two mismatch with TopHat (TopHat v2.0.9, parameters: --microexon-search -a 6 -m 2). Peak calling and the false discovery rate (FDR) calculating were determined as previously described (König et al., 2010).

To identify iCLIP binding sites, the genomic location of 5’ end of each combined read was considered as the cross-link nucleotide, and the binding counts for each cross-link nucleotide were calculated. iCLIP reads associated with protein-coding genes were defined by the region from the annotated gene. Only sense iCLIP reads of associated genes were used for cross-link nucleotide analysis.

To determine the FDR for each cross-link nucleotide, binding counts within ± 5nt of each crosslink nucleotide were merged to represent the height of this nucleotide. The background frequency was computed after randomly placing the same number of binding counts within the gene (wgEncodeGencodeCompV19) for 10,000 iterations. Modified FDR (Yeo et al., 2009) for each cross-link nucleotide was computed against the background frequency. For each gene locus, a threshold peak height as the smallest height equivalent to FDR < 0.05 was defined as iCLIP binding sites.

Statistical analyses

Statistical significance for comparisons of means was assessed by Student’s t test for qRT-PCRs. Error bars represent SD in triplicate experiments. P values below 0.05 were marked by 1 asterisk, while 2 asterisks indicate a p value < 0.01 and 3 asterisks a p value < 0.001. Statistically significant difference was assessed using Wilcoxon rank-sum test with R platform (R v.3.2.2), and statistical significance was set at $p < 0.05$. To evaluate the relevant correlations between two group datasets, Pearson correlation coefficient (PCC) was also performed with R platform (R v.3.2.2).

DATA AND SOFTWARE AVAILABILITY

The accession number for the all sequencing data reported in this paper is GEO: GSE90874. Mendeley data have been deposited in the website: http://dx.doi.org/10.17632/gkn6if6319.1.
Supplemental Information

Coordinated circRNA Biogenesis and Function with NF90/NF110 in Viral Infection

Xiang Li, Chu-Xiao Liu, Wei Xue, Yang Zhang, Shan Jiang, Qing-Fei Yin, Jia Wei, Run-Wen Yao, Li Yang, and Ling-Ling Chen
Figure S1. Verification and characterization of the Dox-inducible circmCherry-expression system for genome-wide siRNA screening (related to Figure 1)

(A)(D)(E) Verification of the circRNA expression reporter system. After 24 h of Dox treatment, the fluorescence of mCherry or EGFP (A), circmCherry RNA (D) and proteins of mCherry and EGFP (E) all increased in HeLa cells stably transfected with the circRNA reporter (shown in Figure 1A). Further transfection of siRNAs targeting the back-spliced junction site of circmCherry (blue arc line in Figure 1A) efficiently decreased mCherry fluorescence (A), circmCherry RNA (D) and mCherry protein (E),
but not egfp/EGFP. The asterisk in (E) represents a fused protein produced from fused 1/2egfp-mCherry-1/2egfp linear RNA (see below, S1F).

(B-C) Both mCherry and EGFP fluorescences are produced from the circRNA expression reporter system (shown in Figure 1A). The expression of both mCherry and EGFP (B) was dramatically increased in transfected HeLa cells after 72 hours of Dox treatment. FACS analysis revealed that the great majority of cells (~99%) expressed both mCherry and EGFP at similar fluorescence intensities (C).

(F)(G) The fused 1/2egfp-mCherry-1/2egfp linear RNA, but not circumCherry RNA, was efficiently reduced by siRNAs (pink thick line in Figure 1A) targeting the junction site between the first 1/2 egfp and the reverted mCherry, shown by RT-qPCR (F) and imaging (G).

(H) Lists of RBP candidates involved in RNA splicing, viral and host immunity, helicase activities and nuclease activities (RBP categories shown in Figure 1G).

(I)(J) Validation of RBP candidates by shRNAs. KD of SLU7 (I) and ILF2 (J) in HeLa cells, followed by examination of circumCherry abundance by RT-qPCRs. Left panels, expression of targeted genes was detected after KD. Right panels, expression of circumCherry RNAs (normalized to linear egfp mRNAs) was reduced after KD following by 24 hours of Dox treatment.

<table>
<thead>
<tr>
<th>A</th>
<th>HeLa (poly(A)+)</th>
<th># of total reads</th>
<th># of mapped reads</th>
<th>% of mapped reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>scramble</td>
<td>25,579,370</td>
<td>27,163,305</td>
<td>91.8%</td>
<td></td>
</tr>
<tr>
<td>NF90 KD</td>
<td>32,216,594</td>
<td>28,782,957</td>
<td>92.4%</td>
<td></td>
</tr>
<tr>
<td>NF110 KD</td>
<td>50,674,379</td>
<td>47,480,174</td>
<td>93.7%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>HeLa (poly(A)+)</th>
<th># of Up-regulated genes (FC ≥ 2)</th>
<th># of Unchanged genes (FC = 0.5–2)</th>
<th># of Down-regulated genes (FC ≥ 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF90 KD</td>
<td>37</td>
<td>10,992</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>NF110 KD</td>
<td>215</td>
<td>11,083</td>
<td>66</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>HeLa (poly(A)+/Ribo+)</th>
<th># of total reads</th>
<th># of mapped reads</th>
<th>% of mapped reads</th>
<th># of circRNAs (CIRCexplorer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>scramble</td>
<td>83,338,706</td>
<td>75,221,058</td>
<td>90.3%</td>
<td>3,643</td>
<td></td>
</tr>
<tr>
<td>NF90 KD</td>
<td>83,921,608</td>
<td>75,508,729</td>
<td>90.0%</td>
<td>2,907</td>
<td></td>
</tr>
<tr>
<td>NF110 KD</td>
<td>60,238,231</td>
<td>71,737,275</td>
<td>89.4%</td>
<td>2,941</td>
<td></td>
</tr>
</tbody>
</table>

Figure S2. Statistics of RNA-seq samples in NF90 or NF110 KD HeLa cells (related to Figure 2).

(A) The numbers of total reads, mapped reads and mapped ratio of poly(A)+ RNA-seq in HeLa cells treated with scramble shRNA, or shRNAs targeting NF90 or NF110.

(B) The numbers of up-regulated, unchanged and down-regulated Refseq genes from the steady-state poly(A)+ RNA-seq in NF90 or NF110 stable KD HeLa cells, compared to scramble shRNA treated cells.

(C) The numbers of total reads, mapped reads, mapped ratio and circRNAs detected by CIRCexplorer (Zhang et al., 2014) are listed in each indicated steady-state RNA-seq dataset, combined from two RNA-seq replicates.
(D) Genome-wide expression of circRNAs in NF90 or NF110 KD HeLa cells. A total of 251 (magenta dots, left panel) or 255 (cyan dots, right panel) high-confidence circRNAs (back splicing junction, BSJ, reads ≥ 5) were identified by the poly(A)/Ribo– RNA-seq in NF90 or NF110 KD cells, respectively. The expression of each circRNA was normalized to its linear RNA isoform under each condition.

(E) The majority (about 85%, $\sim 213/251$ or 255) of high-confidence circRNAs were detected in both NF90 or NF110 KD cells.

(F) 50% of circRNAs detected in S2E were down-regulated in NF90 or NF110 stable KD cell lines.

(G) NF90 and NF110 could target the same circRNA-producing genes. About 70% of the down-regulated circRNAs in S2F were identical circles in NF90 or NF110 KD cells.

Figure S3. Change of circRNA and corresponding mRNA or pre-mRNA upon NF90 or NF110 depletion or over-expression (related to Figure 2).

(A) Steady-state level of mRNA and circRNA in NF90 or NF110 stable KD HeLa cells. The relative abundance of each circRNA and corresponding linear mRNA at the steady state was normalized to actin. Primer sets were designed to recognize circRNA and spliced mRNA at each POLR2A and DHX34 locus shown in Figure 2F.
(B) Nascent level of pre-mRNA and circRNA in NF90 or NF110 stable KD HeLa cells. Nascent RNAs labeled with 4sU were purified from HeLa cells (Zhang et al., 2016b) and for RT-qPCR with primer sets that recognize circRNA and pre-mRNA at each POLR2A, DHX34 and PDE3B locus shown in Figure 2F. The relative abundance of each circRNA and corresponding pre-mRNA was normalized to pre-RNAs of actin.

(C) Steady-state level of mRNA and circRNA in NF90 or NF110 stable over-expression HeLa cells. The relative abundance of each circRNA and corresponding linear mRNA at the steady state was normalized to actin.

(D) A schematic drawing of NF90/NF110 and verification of NF90/NF110 transient double KD in HeLa cells by WB. A shRNA targeting the common region of NF90/NF110 was used.

(E) NF90/NF110 double KD reduced circRNA expression. The relative abundance of each circRNA in NF90/NF110 double KD cells was normalized to its spliced mRNA isoform, as revealed by RT-qPCR.

(F) NF90/NF110 double KD reduced nascent circRNA production. Nascent RNAs labeled with 4sU were purified from NF90/NF110 transiently double KD HeLa cells (Zhang et al., 2016b) for RT-qPCR with primer sets that recognize the circRNA and pre-mRNA at each indicated gene locus. The relative abundance of each circRNA was normalized to its pre-mRNA.
Figure S4. Characterization of Flag-NF90 iCLIP (related to Figure 3).

(A) iCLIP-seq library preparation. Left, analysis of cross-linked Flag-NF90-RNA complexes using denaturing gel electrophoresis. Cell lysates were prepared from UV-cross-linked HeLa cells stably expressing Flag-NF90, and total RNAs were partially digested using low (+) or high (+++) concentration of MNase. Protein-RNA complexes were immuno-purified from cell lysates using an antibody against Flag. The pre-adenylated L3 linker (RNA adapter) was ligated to the 3' ends of RNAs before radioactively labeling the 5' ends. Complexes were size-separated using denaturing gel electrophoresis and transferred to a nitrocellulose membrane. The retardation of protein-RNA complexes was observed compared to the size of the proteins. The radioactive signal disappeared when cells were not cross-linked (-UV). The red boxes marked regions of membranes where were cut out for subsequent purification steps. Right, analysis of PCR-amplified iCLIP cDNA libraries using denaturing gel electrophoresis. RNAs recovered from membrane regions were reverse transcribed and size-purified using denaturing gel electrophoresis (not shown). Three size fractions of cDNAs (High, 120-200 nt, Medium, 85-120 nt, Low, 70-85 nt) were recovered, circularized, linearized and PCR-amplified. PCR

<table>
<thead>
<tr>
<th>HeLa (iCLIP-seq)</th>
<th># of total reads</th>
<th># of mapped reads(%)</th>
<th># of reads after remove PCR duplicates (%)</th>
<th>Clusters (FDR<0.05)</th>
<th>Clusters (RPKM ≥ 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF90 rep1</td>
<td>13,270,452</td>
<td>10,945,000 (82.5%)</td>
<td>8,853,712 (66.7%)</td>
<td>1,310,398</td>
<td>1,126,883</td>
</tr>
<tr>
<td>NF90 rep2</td>
<td>10,473,833</td>
<td>7,793,485 (74.4%)</td>
<td>5,084,493 (48.5%)</td>
<td>635,673</td>
<td>541,766</td>
</tr>
</tbody>
</table>

(B) Table showing the results of the iCLIP-seq library preparation.

(C) Scatter plots showing the number of reads of Flag-NF90 iCLIP binding site in Rep1 and Rep2, respectively. The correlation coefficient R = 0.7749287 and R = 0.918.

(D) Diagram showing the transcription of GTF2H3 gene with 265 iCLIP binding sites, and 137 iCLIP sites. The GTF2H3 gene with 265/137 iCLIP binding sites, and 155/94 of those iCLIP sites binding in 3'UTR region.

The radioactive signal disappeared when cells were not cross-linked (-UV). The red boxes marked regions of membranes where were cut out for subsequent purification steps. Right, analysis of PCR-amplified iCLIP cDNA libraries using denaturing gel electrophoresis. RNAs recovered from membrane regions were reverse transcribed and size-purified using denaturing gel electrophoresis (not shown). Three size fractions of cDNAs (High, 120-200 nt, Medium, 85-120 nt, Low, 70-85 nt) were recovered, circularized, linearized and PCR-amplified. PCR
products were separated on denaturing gel and visualized by EB staining. PCR products were absent or weak when cells were not cross-linked (-UV) or not antibody purified. Red boxes indicated the high and medium bands that were combined for high throughput sequencing. One set of data from the duplicated iCLIP-seq library preparation were shown.

(B) The list of total reads, mapped reads, reads after the removal of PCR duplicates and iCLIP enriched clusters of iCLIP-seq for Flag-NF90 in two independent iCLIP experiments.

(C) Correlation of Flag-NF90 iCLIP replicates. Left panel, correlation of all Flag-NF90 iCLIP binding sites between replicate 1 (1,126,883 binding sites) and replicate 2 (541,766 binding sites). Right panel, correlation of overlapped Flag-NF90 iCLIP binding sites in duplicates (246,179 binding sites). Magenta dots present Flag-NF90 iCLIP binding sites identified in replicate 1 and/or replicate 2. Pearson Correlation Coefficient (R value) is ~ 0.77 for all sites (left panel) or ~ 0.92 for overlapped sites (right panel).

(D) Flag-NF90 binding sites were enriched in the 3’ UTR of the GTF2H3 gene. GTF2H3 has 265/137 iCLIP binding sites, and 155/94 of these iCLIP sites are located in the 3’ UTR region in duplicates, respectively.

Figure S5. Characterization of Flag-NF90 iCLIP (related to Figure 3).

(A) Motif analysis of Flag-NF90 in 3’ UTRs. Flag-NF90 binding sites in 3’ UTRs were identified by iCLIP. Motif logos (by MEME Suite v4.11.2) probability were computed from aligning enriched 15-mers for Flag-NF90 iCLIP binding circRNA flanking introns. The top 500 Flag-NF90 iCLIP site sequences (+/- 10 nt) of 3’ UTR were used to create motifs. Two predominant motifs A-rich and U-rich were shown.

(B) Distribution of the Flag-NF90 binding sites. Left, Flag-NF90 binding sites with iCLIP reads identified from duplicates revealed that NF90 binding sites were enriched in introns. Right, distribution of the Flag-NF90 binding sites after normalization to length.

(C) Distribution of Flag-NF90 binding sites in Alu or non-Alu sequences.

(D) A schematic drawing of NF110 truncations used in S5E.
(E) Rescue circRNA reduction in NF90 KD cells by NF110. The decreased expression of circPOLA2A and circDHX34 in NF90 KD cells could be largely rescued by re-introduction of NF110 wt (#1) but not its truncations (#2-#4). Error bars represent SD in triplicate experiments. *p ≤ 0.05, ***p ≤ 0.001.

Figure S6. Change of circRNA generation upon NF90/NF110 subcellular re-distribution (related to Figure 4).

(A) PKR was required for NF90 and NF110 translocation to the cytoplasm upon poly(I:C) treatment. Left, re-distribution of NF90/NF110 upon 12 hours of poly(I:C) treatment was detected by immunofluorescence with anti-ILF3 antibodies without (scramble) or with (PKR-KD) PKR depletion. Right, statistical analyses showed about 30% NF90/NF110 in each examined HeLa cell were exported to the cytoplasm upon poly(I:C) treatment. But NF90/NF110 were no longer exported to the cytoplasm upon poly(I:C) treatment in PKR depleted cells. 30 cells were examined in each condition. Raw image 3D stacks were imported into Fiji/ ImageJ. The nucleus was masked by Yen method and the whole cell was masked by Triangle method followed by removing the background by NaN background method. Then images were converted from 16 bit to 8 bit. The integrated fluorescence intensity for signal in each nucleus or whole cell was calculated by 3D objects counter.
(B) The numbers of total reads, mapped reads, mapped ratio and circRNAs detected by CIRCexplorer (Zhang et al., 2014; Zhang et al., 2016) in indicated nascent RNA-seq datasets.

(C) Validation of sequencing data in Figure 4E. Nascent RNAs labeled with 4sU were purified from HeLa cells upon poly(I:C) treatment for RT-qPCR.

(D) Validation of PKR knockdown. The relative abundance of PKR mRNA was normalized to actin, as revealed by RT-qPCR.

(E) PKR KD reduced nascent circRNA production. Nascent RNAs labeled with 4sU were purified from HeLa cells and were subjected to RT-qPCR with primer sets that recognize the circRNA and pre-mRNA at each indicated gene locus.

(F) PKR knockdown impaired the reduction of nascent circRNAs in response to poly(I:C) treatment. Nascent RNAs labeled with 4sU were purified from the scramble or PKR shRNA treated HeLa cells upon poly(I:C) treatment for RT-qPCR.

In (C)(E)(F), the relative abundance of each circRNA was normalized to its pre-mRNA. Primer sets were illustrated in Figure 2F.

In (F), Error bars represent SD in triplicate experiments. *p ≤ 0.05, ***p ≤ 0.001.

Figure S7. NF90/NF110-associated cellular mRNAs remained unchanged upon poly(I:C) treatment or VSV infection (related to Figure 5).

(A) NF90-bound linear POLA2A mRNAs remained unaltered in poly(I:C) treated or VSV infected cells. HeLa cells stably expressing Flag-NF90 were treated with or without poly(I:C) or VSV followed by RIP using anti-Flag or anti-IgG antibodies. The percentage of RIP-enriched linear isoform of circRNA-producing gene relative to input was calculated under different conditions.

(B) NF110-bound linear POLA2A mRNAs remained unaltered in poly(I:C) treated or VSV infected cells. See (A) for details.

(C) vsvm but not egfp mRNA competed with NF90 bound circular RNAs. Left panel, a schematic illustration of vsvm or egfp mRNA competition assay with NF90 bound RNAs (circular RNAs or linear mRNA isoforms). Right panel, different amounts of in vitro synthesized vsvm or egfp were incubated with Flag-NF90-RNA complexes. The relative abundance of circRNAs (top right) or mRNAs (bottom right) from the supernatant competed from the incubation with vsvm or egfp was assayed by RT-qPCRs.

In (A-C), Error bars represent SD in triplicate experiments. **p ≤ 0.01, ***p ≤ 0.001.
Supplemental Tables

Supplemental Table S1. Fluorescence density of reporter genes in the human ON-TARGETplus (OPT) siRNA screening (related to Figure 1).
Normalized fluorescence densities of mCherry and EGFP from two independent whole genome RNAi screening were individually listed in sheets 1 and 2. Targeted genes that have potential to affect circRNA biogenesis with either positive (mCherry fluorescence < 0.67 and 0.67 < EGFP fluorescence < 1.5) or negative (fluorescence mCherry > 1.5 and 0.67 < EGFP fluorescence < 1.5) effect were listed in sheets 3 and 4. The 103 known RBPs that have potential to be involved in circRNA expression were listed in sheet 5.

Supplemental Table S2. List of protein factors identified by Mass Spectrometry in dsRNA pulldown (related to Figure 2).
Proteins binding to either perfect (IRregfps v.s single egfps) or imperfect (inverted repeated Alu sequences v.s single Alu) dsRNA duplexes were identified by Biotin-labeled dsRNA pulldown and Mass Spectrometry. Gene/protein identities, dsRNA enrichment (fold change) of perfect or imperfect duplexes and relative p-value (–Log10) were listed.

Supplemental Table S3. List of mRNA gene expression in scramble, NF90 KD or NF110 KD cells (related to Figure 2).
Expression of Refseq genes was individually determined from poly(A)+ RNA-seq in cells with scramble, NF90 KD or NF110 KD by RPKM, listed with gene symbol, genomic location, strand information, gene length and exon number.

Supplemental Table S4. List of highly-expressed circRNAs in HeLa cells with NF90 KD or NF110 KD (related to Figure 2).
Expression of highly-expressed circRNAs (with reads spanning BSJ ≥ 5 in at least one sample) was individually determined from poly(A)–/Ribo– RNA-seq in cells with scramble, NF90 (sheet 1) KD or NF110 (sheet 2) KD by RPM, listed with circRNA host gene symbol, genomic location, and reads spanning each examined BSJ.

Supplemental Table S5. List of nascent circRNAs upon poly(I:C) treatment (related to Figure 4).
Expression of nascent circRNAs was individually determined from nascent RNA-seq in control or poly(I:C)-treated cells by RPM, listed with circRNA host gene symbol, genomic location, and reads spanning each examined BSJ. All examined nascent circRNAs were listed in sheet 1. Down-regulated or up-regulated ones with poly(I:C) treatment (reads spanning BSJ ≥ 1 in both ctrl and poly(I:C)-treated samples) were listed in sheets 3 and 4, respectively.

Supplemental Table S6. List of nascent circRNAs in HeLa cells with NF90 KD or NF110 KD (related to Figure 4).
Expression of nascent circRNAs was individually determined from nascent RNA-seq in cells with control, NF90 KD or NF110 KD by RPM, listed with circRNA host gene symbol, genomic location, and reads spanning each examined BSJ. Highly-expressed nascent circRNAs were determined with at least five reads spanning the examined BSJs.

Supplemental Table S7. List of primer sequences.